Метод Ньютона для задачі на власні значення симетричної матриці
DOI:
https://doi.org/10.18524/2519-206X.2020.2(36).233787Ключові слова:
Метод Ньютона, власне значення, симетрична матриця, воротна iтерацiяАнотація
Розглянуто метод Ньютона обчислення власного значення та відповідного власного вектора дійсної симетричної матриці. Нелінійна система рівнянь, яка розв'язується методом Ньютона, складається з рівняння, що визначає власне значення і власний вектор матриці, та умови нормування власного вектора. Метод дозволяє одночасно обчислювати власне значення і відповідний власний вектор. Початкові наближення для власного значення і відповідного власного вектора можна знайти степеневим методом або методом зворотної ітерації зі зсувом. Запропоновано простий доказ збіжності методу Ньютона в околиці простого власного значення. Показано, що метод має квадратичну швидкість збіжності. За обчислювальними витратами на одну ітерацію метод Ньютона можна порівняти з методом зворотної ітерації з відношенням Релея. На відміну від зворотної ітерації, метод Ньютона дозволяє обчислити власну пару з більшою точністю.
Посилання
Kantorovich L.V. Akilov G.P. (1984). Funktsionalnyi analiz [Functional analysis]. Moskow: Nauka, 752 p.
Wilkinson J.H. (1965). The algebraic eigenvalue problem. New York: Oxford Univ. press, 662 p.
Faddeev D. K. Faddeeva V. N. (1963). Vychislitelnye metody lineinoi algebry [Computational methods of linear algebra]. Moskow: Gos. Izdat. Fiz. Mat. Lit., 734 p.
Kublanovskaya V.N. (1972). Metod Newtona dlya opredeleniya sobstvenyh znachenii i sobstvenyh vektorov matritsy [A Newton’s method for finding the eigenvalues and eigenvectors of a matrix]. USSR Computational Mathematics and Mathematical Physics, Vol. 12, Issue 6., p. 1-12.
Collattz L. (1964). Funktionalanalysis und numerische mathematik. Berlin-Guttingen- Heidelberg: Springer-Verlag, 371 p.
Izmailov A.F., Solodov M. V. (2005). Chislenye metody optimizatsii [Numerical optimization methods]. Moskow: FIZMATLIT, 304 p.
Parlett B. (1987). The symmetric eigenvalue problem. SIAM, 426 p.
Samarskiy A.A. (1983). Teoriya raznostnyh shem [The theory of difference schemes]. Moskow: Glav. Red. Fiz. Mat. Lit., 616 p.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Ця робота ліцензується відповідно до Creative Commons Attribution-ShareAlike 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) роботи, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).