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For the second-order differential equation of general form y” = f(t,y,y’), where f :
[a,w[xAy, x Ay, — R is continuous function, —c0 < a < w < 400, Ay, is a one-
neighborhood of Y;, ¥; € {0,+to00} (¢ € {0,1}) we study the question of the existence
of solutions, for which tl‘irgly(i)(t) =Y; (i € {0,1}). Among the set of such solutions we

separate a sufficiently wide class of so-called P, (Yo, Y1, Ao)-solutions. Such a solution was
previously introduced in the study of the two-term equation y" = aop(t)wo(y)¢1(y’), where
ap € {-1,1}, p: [a,w[—>]0, 4+00[ is continuous function, ¢; : Ay, —]0, +o0[ (¢ =0, 1) are
continuous regular varying as z — Y; (i = 0,1) functions of orders o; (¢ = 0,1), such that
0o + 01 # 1. In this paper a condition under which the right-hand side of the equation as
Ao € R\{0,1} and ¢ T w in some sense close to the multiplication cop(t)¢o(y) with rapidly
varying o function at y — Yo, is established. We have obtained necessary and also suffi-
cient conditions of existence of P, (Yo, Y1, Ao)-solutions, asymptotic representations of these
solutions and their first-order derivative and number of parametric family of these solutions.
An example is given.
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INTRODUCTION

Consider the differential equation

y' = fty,y), (1.1)

where f : [a,w[x Ay, x Ay; — R is continuous function, —oco < a < w < 400,
Ay, (i € {0,1}) is a one-side neighborhood of Y; and Y; (i € {0,1}) is either 0
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or +00. We assume that the numbers u; (i =0, 1) given by the formula

1 ifeigher Y, =400, or Y;=0
B and Ay, is right neighborhood of the point 0,
Hi = —1 ifeigher Y; = —oco, or Y;=0
and Ay, is left neighborhood of the point 0,

satisfy the relations

o1 >0 for Yg=4oco and popr <0 for Yp=0. (1.2)

Conditions (1.2) are necessary for the existence of solutions of Eq.(1.1) defined

in a left neighborhood of w and satisfying the conditions
yO(t) € Ay, for t€ [to,w] , limy() =Y, (=0,1).  (1.3)
w
One of the classes of Eq. (1.1) solutions with properties (1.3) that admits
some asymptotic representations is the class of P, (Yo, Y1, Ao)- solutions.
Definition 1.1. A solution y of Eq. (1.1) on interval [to,w[C [a,w][ is
called P, (Yy, Y1, \o)- solution, where —oo < \g < +o00, if, in addition to (1.3),

it satisfies the condition
(¢ 2

im O _
thw y(t)y" (¢)

Depending on Ag these solutions of Eq.(1.1) have different asymptotic prop-
erties (see [1]). For Ao € R\ {1} in [2] for f(t,y,5") = aop(t)|yl**|y/|"* sign,
where o € {—1,1},p : [a,w[—>]0, +00[ is a continuous function, og + o1 # 1,

such ratios
/ /!
OV do Lm0y 1
ttw Y t) Ao —1 ttw y’(t) Ao —1
where
t if w=+4o0,
Tw(t) = ]
t—w il w<4oo,

are established.
Definition 1.2. We say that a function f satisfies condition (F'N)y, for

Ao € R\ {0,1} if there exist a number oy € {—1,1}, a continuous function
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p: [a,w[—]0, +oo[ and twice continuously differentiable function pg : Ay, —
10, +o0[, satisfying the conditions

. . o(y)eo(y

Gh(y) #0.  lim go(y) = go € {0400}, lm LW _y g g
R v (9o(y)
yE€AY, YyeAY,

such that, for arbitrary continuously differentiable functions z; : [a,w[—

Ay, (i =0,1), satisfying the conditions

limz(t)=Y; (:=0,1),

tTw
o mu(t)z(t) Ao - me(t)2(t) 1
M=) -1 T T a1
one has representation
f(t,z0(t), z1(t)) = aop(t)po(z0(t))[1 +0(1)] as tTw (1.5)

Note that the choice of ag and the functions p and g in definition 1.2
depends on the choice of \g € R\ {0,1}. It is also obvious that the numbers
o, p1 determine the signs of any P, (Yy, Y1, Ag)-solution of Eq. (1.1) and its
derivative in a left neighborhood of w (respectively). Moreover, under condition
(F'N),, sign of second derivative of any P, (Y, Y1, Ao)-solution of Eq. (1.1) in
a left neighborhood of w coincides with the value op. Then taking into account
(1.2), we have

agp1 >0 for Y7 =4o0c and oapui <0 for Y =0. (1.6)

MAIN RESULTS
2. Auxiliary statements

We choose a number b € Ay, such that the inequality
| <1 for Yp=0, b>1(b<—1) for Yy=+oo (Y= —00)
is respected and put

Ay, (b) = [b,Yp] if Ay, is aleft neighborhood of Y,
Ay, (b) =]Yp,b] if Ay, is aright neighborhood of Yj.



On asymptotic representations... 67

Definition 2.1. Let f : Ay, — R\ {0} be a twice continuously differ-
entiable function. We will say that f € T'(Yy, Zo) if it satisfies the following

conditions

) or 0, . ") f(y
f'ly) # 0, yhj{} fly) =2, Zy= oth I yhjg (]E’() )52) =1
yeA% ergther 00, yeAY% Yy

First of all, we note that, by virtue of definition 2.1, any function from
(Yo, Zy)- class is rapidly varying as y — Yp.
In [3] using the properties of functions from the class I' introduced and
studied in detail in the monograph Bingham N.H., Goldie C.M., Teugels J.L. [4]
(Chapter 3, item 3.10), the following auxiliary assertions about the properties

of functions from the class I'(Yp, Zy) were established.

Lemma 2.1. If f € I'(Yy, Zy) then there exists a continuous function
g : Ay, — R\ {0}, called complementary to f, such that

lim w =e" forany ue€R,
v=Y0 f()

yEAYO

moreover, the complementary function is uniquely determined up to functions

equivalent as y — Yy, for which, for example, one of the following functions

F1 du | dt f d
[ (jrwa) IEE
) f'ty) " (y)

as y — Yo,

<i—c

f(z)dx

where

b if  lim f(y) = Foo,
veAy)

Yo if  lim f(y) =0,

y—Yp
yGAYO

can be chosen.

Lemma 2.2.
1. If f € I'(Yo, Zo) with complementary function g then lim % =0.

y—Yp
yEAyO

2. If f e T' (Yo, Zo) with complementary function gthen for any continuous
function u : Ay, — Rthat satisfies the conditions

lim u(y) =u €R, lim f(y+u(y)g(y)] = Zo,

y—Yp y—Yp
yGAYO yEAYO
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there is a limit relation

lim =e

y=Yp f(y)

YE€AY,

Lemma 2.3. If f € I'(Yy, Zy) strictly monotone with complementary
function gthen its inverse function f=' : Ay — Ay, is slowly varying at

z — Zy and satisfies the limit relation

o 109 = 1)
h a0

2€EA 7

=In\ forany A>0,

moreover for any given A > 1 limit relation is satisfied uniformly in A €
1
[£:A].
Note also, it follows from the Representation Theorem for I" ([5],Chap-
ter 3, item 3.10, position d) that for a function f € I'(Yp, Zp) there exists a
continuously differentiable function f; € I'(Y, Zp) such that

lim fy) _ and  lim yf1(y) C i
gejyg fi(y) ze?yg fi(y)

3. Main results

Now we introduce auxiliary functions and notation as follows:

/ ds wo(s)
B Ayt — R B) = [, B- .
900(5) ds __
B Yo if 20 = const,

a if [m,(r)p(r)dr = oo,

w if [ 7,(7)p(T)dr = const,

V(0 =0 (ool - 1160), () = D gt = TR,
(@b ) CVIED
kw—«w( EX Q,hw J L e,
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p2 =sign @o(y) for y € Ay,

Theorem 3.1. Let Ao € R\ {0,1} and let the function f satisfies condition
(F'N)x,- Then, for the existence of P,,(Yo, Y1, Ao)- solutions of the differential
equation (1.1), it is necessary that the conditions (1.2), (1.6) and

apporo > 0, popido(Ao—1)me(t) >0, apua(Xo—1)I(t) <0 for te€la,w|

(3.1)
Oéo(>\0 — 1) 1tleI(t) = Zo,
(D) I'(t) _ag(Ao — 1)7d (t)p(t)po (Y () Ao
lim ———~ =+ | = = .
e I(t) 0 e Y (%) o1 83
are hold.
Moreover, each solution of this kind admits the asymptotic representations
y'(t) / Ao(1+0(1))
————— = ag(Ao—1) 7, (t)p(t)[14+0(1)], Yit)) = -5 t1Tw.
s = el Dma(p(+o(1)]. h(u(1) =~ el o

Remark. Asymptotic representations of P, (Yo, Y1, Ag)- solutions of Eq.
(1.1) can be written explicitly

y(t) =Y () <1+Z[(<1t))>, y'(t) = /\O)\Eli((tt))(l—i-o(l)) as ttw. (3.5)

Proof of Theorem 3.1. Let \g € R\ {0,1} and y : [to,w[— Ay, be
an arbitrary P, (Yp, Y1, Ao)— solution of Eq. (1.1). Then there is a number
t1 € [to,w[ such that y®)(t) # 0 (k = 0,1,2), signy® (t) = p (k = 0,1) for
t € [t1,w[. Moreover, from the equality

(40 =y v
y'(t) (/' (1)

and conditions (1.3), the definition of the P, (Y, Y1, Ao)— solution immediately
implies that

(b)Y (t) Ao T (t)y" () 1
lim = ,  lim = . 3.6
ttw y(t) A —1 ttw y’(t) A —1 ( )

From this, in particular, it follows that the second of the sign representations
(3.1) holds. The first of conditions (3.1) can be obtained from the definition
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of the P, (Yo, Y1, \o)— solution of Eq.(1.1). Due to (3.6) and the condition
(F'N)), which the function f satisfies from (1.1) we have

/(1) = oop(Deou(®)L + oL)] as ¢ 1w (3.7)
: YO L+ 0(1)] as ¢ (3.8)
o) aop 0 as w. )

Multiplying both parts of (3.8) by 7, (t), taking into account (3.6), we obtain
the first of relations (3.4), whose integration on the interval from ¢; to t leads
to the limiting equality

t t

t1 t1

or by virtue of the definition of the limits of integration A and B

D(y(t)) =ap(Ao— DIH)[1+0(1)] as t1Tw. (3.9)
It follows from condition (1.4) that the function ¢q together with its deriva-
/
tive of the first order are rapidly varying as y — Y,, because hl’r‘}/ ygpo((y)) =
ZEAYS Poly
/!
+oo, lim yga/o(y) = 400
v—Yo g(y)
yEAy,

coly) , e0()
wo(y) — woly)
addition, taking to account the L’Hopital rule in the form of Stolz, we can

Also from (1.4) as y — Y, the equivalence follows. In

assert that

1
i) 2
lim 7(19) ) N e C-11C)) (3.10)
v 3Yo vexye —aly) v wo(y)eo(y)
* eoy) * (o) ’
hence
1
D(y) ~———— as y—Y,  Oypyly) <0 for yeAy. (3.11)
eo(y)
Condition (3.11) implies as y — Y, fulfillment of the equivalences
/
/ ! / " —gpg(y)‘l’(y)
O(y) _ woly) _eoly) (W) _ ¢iy) 1 (312)
o(y)  D(y) vo(y)” (¥ (y)) ok

©o(y)
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Hence taking into account the lemma 2.14 (see [4], Chap. II, Sec. 2.3., P. 54) it
follows that the function® belongs to the class I'(Yp, Zp) with a complementary

function g, for which one can choose one of the equivalent functions

(y)  2(y) vy
"(y)  P'(y) @0 (y)

Further from (3.9) by virtue of (3.11) the third of the sign conditions (3.1)
follows. Next from (3.9), (3.11) we have
Y Oeoy(t) _ mu(t)p(t)

el 1w LWk

which, by virtue (3.6), implies the equality

y(t)(p{)(y(t)) - _)\0 —1 ﬂg(t)p(t) . N N
eo(y(t)) X I(t) [1+0(1)] t1w.

From here, with allowance, y@&((y)) = %00 the first of the limit relations (3.3)
follows. o

Note that the function ® retains its sign on Ay, tends either to 0 or to
+o00 as y — Yy, and increases on Ay, due to ®'(y) > 0. Therefore, it has an
inverse function ®~1 : Ay — Ay, , where, due to the second of conditions

(1.4) and the increase !

Zo= lim @(y) € {0,400}, (3.13)
ny2390
Ay = [20, Zo[ %f Ay, ?s a léft neig.hborhood of Yy, 20 = B(b).
120,20] if Ay, is aright neighborhood of Yy,
Now from (3.9) implies (3.2) and we find that
y(t) = 1 (ap(Mo — DIH)[1 +0(1)]) as 7T w. (3.14)

Note that the function ®~! belongs to the class I'(Yp, Zo) and complementary

to it can be chosen as g(y) = ?Ez; From the definition of Zy, uo, the
0

third of sign conditions (3.1) ®~! (ap(Xo — 1)I(t)) € Ay, as t € [to,w[ and
ltle &1 (ap(Ao — 1)I(t)) = Yy follow. Therefore, based on the lemma 2.3 we
have the limit equality
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8 (a0 — DI +o(D)]) ~ &~ (ap(o — DI(H) _
ttw _Po ((1)71 (a0(>\0 — 1)](t>))
w0 (@7 (ao(ho — 1)I(1)))
= PTG ) — 7 (2)
7 o (2) ’
e o (2)

which we can rewrite in the form
&~ (ap (Mo — DI(E)[1 4 o(1)]) =

d ! (ap(No — 1)I(t)))
1 (ao(ho — 1)1(t)) + L&

(oo = DI @ T (g0~ DI10)
Thus, the first of (3.5) is established. Note that this relation can also be

rewritten as

o(l) as t7Tw.

yt) =Y (@)1 +0o(1)] at t7Tw, (3.15)

since V(O (V2 ,
R A0 1040 BEA ),
tw o (Y(t)) w0 wo(y)

Yo

= Fo0. (3.16)

Invoking the first of the limiting equalities (3.6), from (3.15) we obtain the
second of the relations (3.5). Now we write (3.7) with using (3.5) in the form

') = caplthen (Y0 + N o) as t1w (347

Then, as a complementary to the function g € I'(Yy, Zy), we choose g(y) =

5983. Then, taking into account that ltle Y(t) =Y., Y(t) € Ay, at t € [to,w],
0 w

we obtain
R
e (Y (1) B R

which in turn leads to

oV (1)
# (Y(” T ¥ )

Therefore, relation (3.17) takes the form

o)) =0 (VO 1+ 1] a5 11

Y (t) = agp(t)po (Y (1)) [1 +0(1)] as t1w.

From the last representation, taking into account the second of the limit equal-

ities (3.6), we obtain he second of conditions (3.3).
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The theorem and remark are proved.
To prove sufficient conditions for the existence P, (Yp, Y1, A\g)—solutions to

Eq. (1.1) we need several auxiliary assertions.
Lemma 3.1. 1) If there is a (finite or equal +o00) limit

<906(y) )’ :
o (?5;) i = 319
®o(y)

then it is equal to 0;
2) if there are (finite or equal +00) limits

@6(1/))’

dl

= lim 9007(3/)

! iil@ woly) (3.19)
)

Yy
NN 290(2)
) (5) [y e
lim P/ wo for ~ =400, (3.20)
sead o woly) ’y%(y)‘
vo(y) vo(y)
then
<s@6(y)>'
i \Po(®) ‘wé(y)‘ 0 (3.21)
yye—g% <<p6(y))2 wo(y)
vo(y)
and
NN 2¢0(2)
y @O(y>>/ QOU(Z) dz
lim o)/ w =2 for = +oo. (3.22)
e #ly) 'Wé(y)‘
wo(y) vo(y)

Theorem 3.2. Let A\g € R\{0, 1} and let the function f satisfies condition
(FN)y, and conditions (3.1) - (5.8) are satisfied, as well as

_ q<t>) VIHD] = 0. (3.23)

lim Ao
tTw )\0 -1



74 Kycix JI. 1.

Then:

1) if appe = 1 and exists (finite or equal to +oo) limit (3.18), then dif-
ferential equation (1.1) has a one-parameter family of P,,(Yy, Y1, Ao)—solutions

with asymptotic representations

2) if appe = —1 and there are (finite or equal to +00) limits (3.19), (3.20),
then

1im< 20 —q(t)) |H (t)|h*(t) =0 (3.25)

tTw

and in each of the cases: |y| < 400, 7 # —1, 3Ag — 24+ 5X\gy # 0 or v = 00
the differential equation (1.1) has at least one P, (Yy, Y1, \o)— solution with

asymptotic representations

B o(1) o Ao Y(1) o(1)
“”‘”“@*h@ﬂ@)’y@‘AWme>G+mo|HmJ’
(3.26)
moreover, in the case |y| < +00 and Ao(7+1)(3Xo —2+5Ngy) < 0 there exists

a two-parameter family of solutions with the indicated asymptotics.

Proof of Theorem 3.2. Let Ao € R\ {0, 1}, the function f satisfies
condition (F'N)), and the conditions (3.1) - (3.3) hold, as well as (3.23). Let
us show that for Eq.1 (1.1) there is at least one P, (Yp, Y1, Ag)— solution in

each of the cases: ague = —1, ague = 1.

Let’s make a transformation

““:““Q+ﬁ@>’y@:mfli%<“%|;m> (3.27)
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and obtain a system of differential equations of the form:

uo= 7T|ﬁ1(5§)| [(/\0)\81 —q(t)) |H (t)|sign H(t) + /|H(t)| sign H (t)k(t)v1+
;L |H (1)) f(t,Y(t,m),Y[l](t,vQ)) q(t) o (Y (t,11))
I () aop@po Vo)) Ao ?po(y(t)l) +1—q(t)+
_a(t) | H)kQ) vy
- (- ) ]

(3.28)

where Y(£,v,) = Y () <1 4 I;}(lt)> YWt ) = A(ﬁgli((tt)) <1 4 Ig(t)!> .
Consider system (3.28) on the set Dy = [to, w[x Vo, where Vo = {(v1,v2) : |v;] <
i = 1,2}, and the number ¢ (taking into account (3.1), (3.2)) is chosen in such
a way that Y'(¢,v1) e Ay, (b) for t € [to,w[ and |v1]| < 5 YIU(2,02) € Ay, at
t € [to,w[ and |va| < &5 ap(Xo — 1)I(t) € Ay, at t € [to,w].
By virtue of the limit equality (1.4), we have

1
29

ltle H(t) = f+o0. (3.29)

Moreover, the second of conditions (3.3) implies

: Ao
1 t) = . .
lim q(t) o1 (3.30)
A consequence of condition (3.23) is the limit equaty
I H(t)] = 1i 0 _ H(t)| = 0.
i (0) T = tim (32 = a(0)) VA =0
Then, taking into account (1.4), (3.29), (3.30)
/ !
lim mo(t) (Yt 1)), lim ¢(t) + lim mo(\H (v _
ttw Y (t,v1) thw thw H2(1) 1
H(t)
1, 90 (Y() po (Y(2)) v Ao
= lim¢(t) 1—< + > -1 T
tHw H(t) spl 1 1 Ao — 1
(0 (Y'(2)) 10

unformly in  |v1| < 1.

Also, in view of (1.4), (3.29), (3.23), we obtain
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/

) (Y[” (t, vz))

im t — lim —1—Y5m Ww(t)Hl(t) _ 1
ltTw y (t,v9) ltTw a(t) 22 ltTw H(t) \/|H(t)| Ao — 1T
im v a(t) sign =1
i <1+2v2> (i s HOVIHOID)) = 57
[H(t)|

unformly in  |vo| < 2.
Also, due to Definition 1.2

(.Y 0 0), Y01, 0))
lim =1 unformly in (v1,v2) € Vg,
o aop(t)eo (Y (t,v1)) yin (v, v2) € Vo

those we can write

f (t,Y(t,vl), vy, vg))
aop(t)wo (Y (t,v1))

where ltle Ri(t,v1,v2) =0 unformly in (v, v2) € Vb.
w

wo (Y(t,v1))

=1 —i—Rl(t, vy, 02), (3.31)

Next, consider the relationship

wo (Y (1))
By Lemma 2.2
wo(Y(t))v1
wo | Y(t) +
: Y(t,v1)) _ po(Y(1)) , o (Y(t,v1))
hm(po( L) — lim 4 = e¥, that’s why x5 =
tw o (Y1) eo (Y(1)) Y 00 (YD)
1+v + R(t, Ul),
where v ( )
Y(t,v .
R(t,v1) = PO L)) 1y Jlim R(t,v1) =0 unformly in |v;| < L.
( 1) ©0 (Y(t)) 1 o ( 1) Yy | 1| >3
Y(t))v
a (vo+ Zha)
Moreover, it is easy to see that R] (¢,v1) = 4 — 1.
7 (o) A1)
Here ¢}, € I'(Yo, Zp) with complementary function g(y) = Z?Eg; Hence,
0

by Lemma 2.2

ltiTrgRgl(t,vl) = e —1or R (t,v1) = v1 + r(t,v1), %iggr(t,vl) =0
unformly in
lv1| < 3. Hence, for any € > 0 there also exist ¢; € [to,w[ and § €]0, 5] such
that |R;, (t,v1)| <€ at t € [t1,w], v1 € [-0,0].
Therefore, the function R satisfies the Lipschitz condition in terms of the

variable v; with the Lipschitz constante, we have the estimate (taking into
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account R(t,0) = 0)
|R(t,v1)| <eln| at te[ti,w] and v €[-6,0].

Moreover, if we use the Maclaurin formula with a remainder term in the La-

grange form up to a term of the second order, we can write
1 po(Y () ( po(Y (1)) > 2
R(t,v1) = 5= Y (t) + SF=2£€ | vy, where |€] < |vq].
00 = 2152 VO T G oo e =
In view of (1.4)

Y) \\
N e0), (e (v + Ziviay 1
A0 Gvent) - () y o)
0 oo (v + 5
Po(Y (1))

where

ltiTm ri(t,v1) =0 unformly in  |v1| < 3. Further, taking into account that
w0, ¢, € T'(Yo, Zp) have the complementary function g(y) = i?gzg, based on

0

Lemma 2.2, we have

// (Y1) _ (o (Y(1))? : _
0 (Y(t) + Zgg(y(t))§> = f;’o(weé (14 ra(t,v1)), where ltlTrEm(t’vl) =

unformly in  |v1] < 1.
Therefore
1
R(t,vn) = 565 (1 +71(t,v1)) (1 + ra(t,v1)) vi. (3.32)

Hence, for any > 0 there also exist ¢, € [to,w[ and & €]0, 1] such that
IR(t,v1)| < (1+¢) v} as tet,w], v €[-60]. (3.33)

Having chosen an arbitrary ¢ system (3.28) we will further consider it on the
set Dy = [t1,w[x V1, where Vi = {(v1,v2) : |vi| <9, i=1,2}.

We now rewrite system (3.28) in the form

/ [H(t)]

ey [f1(t) + cr1(t)v1 + crz(t)vo],
v = W [f2(t) + ca1(t)v1 + eaa(t)va + Vi(t,v1,v2) 4 Va(t, v, v2)],

(3.34)
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where

A0 = (5227 — o) VIH@Tsign HE), - en() = /THE)] sign H@k(?),
t

ci2(t) = N)i\iogilﬁ(ﬂ’ fa(t) = %? +1—q(t), ecalt)= %0);
ng(t) = <1 — Q(2t) + H(t%k(t)> |}1[(t)| s Vl(t,vl,vg) = %?Rl(t,vl,vg)(l + Ul),

Vg(t, V1, ’02) = %(7)2 (1 + Rl(t,’l)l,’l)g)) 65 (1 + rl(t,vl)) (1 + Tz(t,’l)l)) U%.

Here, in view of (3.23), (3.29), (3.30), (3.18), the representation of the function

Ry, we have

. _ . o . _ . _ )\OIMQILLQ . o
lim f, (t) =0, lin fa(t) =0, lin cn(t) =0, lin ci2(t) = =1 lim e (t) =
= %o lmh(t) = 200, ImVi(ten,v:) =0 unformly in (v1,02) € Vi,

Va(t, v1,v2)

lim =0 wunformlyin ¢ € [t;,w].
|v1|+|v2|—=0 "U1’ + ’1)2‘ y [ 1, [

(3.35)
In this case, the limit matrix of coefficients for v, v9 has the form
0 Aofofi
A — 1
1 0 ’
A — 1
whose characteristic equation
2 _ M - (3.36)
(Ao — 1)?

Note that sign(uopzro) = appz € {—1,1}. If we assume that apue = 1
and (3.18) exists then Eq. (3.36) has two different roots of different signs and,
therefore, according to Theorem 2.2 in [4], system (3.34) has a one-parameter
family of solutions (vi,vs) : [t2,w[— R? (ta € [t1,w[) vanishing at ¢t 1 w. By
virtue of the transformation (3.27), each such system solution y : [t2,w[— R
corresponds to a solution y : [ta,w[— R of Eq. (1.1) that admits the asymptotic
representations (3.24) for ¢ T w.

Now consider the situation when agus = —1. In this case, the characteristic
equation (3.36) has two complex conjugate roots. In order to be able to use

the theorem (2.2) of [4], we apply two transformations to the system (3.34) in
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succession. Let’s set the first one like this:

vi(t) = wi(r), v2(t) = wa(r) + Swi(r), 7(t) = Bh(t),

Lo N (3.37)

if w=+4o00
— si w t = !
B = sign(ma(t)) { -1 if w<4o0o,
where the constant C' will be chosen later. Note that

T(t1) =0, 7(t)>0 at t€lt1,w] ltleT(t) = 400
Transformation (3.37) will bring system (3.34) to the form
A
wh =) muun - 3Pl
why = B[ga(r) + 3 + mar(T)wn + mas(rhws + Wa(rywi, we) + Wa(r,wn, ws)]
(3.39)
where
_ _ _ 1Ml ¢ _ _C
arl) = A0, i) = en® - 324G g60) = £0) - L),
Cp C2 |\

mar(r(0) = en(t) = 37 + 2yl - en(®) + 25 + st
mas(r(8)) = cas(t) + T(t%ﬁoll) Wi(r(t), wi, wn) = Vit wi,wa + Cun) (i = 1,2).
Here according to (3.29), (3.30), (3.35)

lim g;(1) =0, TEIEOO mu(1) =0 (i =1, 2),T£r+noom21(7') =0,

T—+00
TETOO Wl(T, wy, wz) =0 unformly in (wl, ’LUQ) S Vl, (340)
li Walr,w,w) _ unformly in 7 € [0, 400

im
fwi [ +wa| 0 [wi] 4 [we]
For further evaluations, we need to know the behavior of some expressions.

wo(y)

It is easy to see that for v = const, the function ‘M(y) is regularly varying

T 5 L order for y — Yo, because

. y( ’yﬁo((y;)D . y(;fé)m

(wé(zﬂ)' o)

~ i A2/ yeoly) _
y=Y / v=Y ©o(y) u=Y ©o(y)
yGAYO ‘4,00(1/)' yEAyO 2 0 yeAYO 2 0
yeo(y) yeo(y) yeo(y)
vy—1
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Further, based on the form of the functions H, ¢, h, (3.29), (3.30), (3.3), it is
easy to verify by L’Hospital’s rule that

\/' <P0 '
h(t) lim po(Y T N Rt
tTw Y(t Z ( ) t Y(t ( ) tTw q(t) AO '
Y (t1 O(Z) Y (t (Z)
(3.41)

Using the representation of a regularly varying function and the properties of

slowly varying functions, from the last limit equality at ¢ T w we have

Y (t)
o,

Now we can find

dZ )\0—1 2
X v+1

2¢0(2)

e H{). (3.42)

lim_(mas(r) 4+ ma(r)) = m Bh(7(0)(eza(t) + enn(t)) = lim 6%

y <1 _ Q(TQ(t)) n 3k(T(t))2H(T(t))> _ BQo—=2+3X07)

Ao(y+1) 5.13)
3.43

It is also possible to choose a constant C'in such a way that 7(maa(7) —mi1(7))

as 7 — 400 tends to zero. Really,

lim_7(maa(r) = mus (7)) = lim Sh(r(1) <CQ2(t) —en(t) + m> _
m h(r(t)) <1 _ Q(T(t)) _ k@) H(r (ﬂ)) L 2lC _ B — Aoy = 2)
|H (7())] 2 2 Ao —1 Ao(y + 1)
NG

-1
Thus choosing at v # —1

B(Ao — 1)(Aoy +2 — o)

C = 3.44
2[Ao[Ao(y + 1) (3:44)
we get
Tll)l_‘l_looT(MQQ(T) - m11(7')) =0. (345)
Also taking into account (3.38), (3,23), (3.42), (3.45)
lim 7mai(7) = 0. (3.46)

T—+00
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If v = o0 then due to (3.22)

(
) 2pp(2) | dz
N0 <¢ f?féfff)w/ o2 | =
lim T(mQQ(T)+m11(T)) = — lim 7 L4 : = 30,
T—+00 2 T7—+o0 M Y(t @6(Y(t))
p(Y (1)) ‘gpo(Y(t)) ‘
(3.47)
im 7 (maa(7) —ma (7)) = i‘o)\o_'? -5
and the constant C' can be chosen as
~ Br—1)
C = 72‘)\0‘ , (3.48)

(3.46) is hold at v = +00. We now apply to system (3.39) the transformation

w: (7) cos(at) —sin(ar) 217(_7)
- (3.49)
sin(ar) cos(ar) oo (7
w2l Aol Aol 2§ )

V1ol

where a = -1 Let’s get the system

=

2y = 2[Fi(7) 4+ bi1(7)21 + bia(7)22 + Z11 (7, 21, 22) + Z12(7, 21, 22)]

z, = % [F2(T) + ba1(T) 21 + baa(7T) 22 + Zo1 (T, 21, 22) + Zaa(T, 21, 22)] ,
(3.50)
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where

Fi(1) = 7% (g1(7)cos(at) + |)\0|92(7')3in(a7')) ,

Fy(r) = B7* (~g1(r)sin(ar) + /olga(r)cos(ar) )

bii(t) =1+ % (m11(7) + maa(7) + (m11(7) — maa(7))cos(2ar)+
|)\0|m21(7')sin(2047')> ,

bi2(7) = 7 ((maa(7) — mar(7))sin

bo1 (1) = E7 ((maz(7) — myi(1))sin

baa () = 1+ &7 (ma1(7) + maa(7) + (maa(1) — muy (1))cos(2ar)—
ofman (7 )sin(2a7))

Z1i(T, 21, 22) ﬂ\/WT sin(ar)

xWi(t, Zcos(ar) — Zsin(aT), stm(om') + ﬁcos(aﬂ) (1=1,2),

Z9i(T, 21, 22) = B+/|Mo|T2cos(aT)
xWi(T, Zcos(at) — Zsin(aT), \/m sin(at) + \/;\i‘ cos(at)) (i=1,2).
o| T o| T

(2a1) — 2+/|Ao|mai(T)sin?(aT) ) ,
(

2a1) — 2 |)\0|m21(7)6082(a7) )

Now, based on conditions (3.25), (3.43) - (3.48), we note that

lim Fi(r)=0(=1,2), lm bja(r) =0, lim by (1) =0,

T—+00 T—+00 T—+00
3X — 2+ 5A
g)\TW at v = const # —1,
lim b11(7’) = lim b22(7’) =
T—+00 T—400
% at v = Fo0.

In addition, according to (3.40), the boundedness of the functions sine, cosine

Zia (T, w1, wa)

lim =0 unformlyin 7 €]0,+0c0 i=1,2).
21| +lzal 0 |21] + |22] Y [ L« )

(3.51)
Moreover,

lim Zy;(7,21,22) =0 unformly in (z1,22) € Vi (i=1,2). (3.52)

T—+00

Then it follows from Theorem 2.2 in [4] that system (3.50) in each of the
cases |y| < 400, v # —1, 3\g — 2+ 5X\py # 0 or v = +oo has at least one
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solution (z1,22) : [T, +0o[— R? (7« € [0, +00]) tending to zero as 7 — +oo0.
Also the inequality Ao(y + 1)(3Xg — 2 + 5Agy) < 0 is satisfied, there exists
a two-parameter family of such solutions. According to the transformations
(3.27), (3.34), (3.37), (3.49) each of these solutions corresponds to a solution
of equation (1.1), for which the asymptotic representations (3.26) are valid for
t1T w.

The theorem is completely proven.

k
For instance, the differential equation y” = > a,op;i(t)pio(y), where there
i=1

A0

(2% |, () o~ . pilt)
, lim =0
R S

(j € {1,....,k},i #7), lim einly) _ 1(je{1,...k}), c = const, cug >0
v2Ye $jo(y)
0

satisfies the conditions of Theorem 1, Theorem 2 as Ao € R\ {0,1}. Here

Y(t) = c[m(t)\%7 H(t) = W'

2
is j € {1,...,k} such that p;(t) =

CONCLUSION

In this paper, for essentially nonlinear nonautonomous differential equa-
tions of the second order in a sense, closed to two-term equations with rapidly
varying nonlinearity with respect to the desired function, necessary and also
sufficient conditions of existence and asymptotic representations of P, (Yp, Y1, \g)—
solutions for A\g € R\ {0,1} at ¢ T w (w < 400) are established. In the future,

it will be of interest to obtain similar results in the cases A\yg = 1, A\g = 0.
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Kycix JI. I
TIPO ACUMOTOTHUYHI 30BPAXKEHHSI OJHOTO KJIACY PO3B’A3KIB IUPEPEHIIAJILHUX PIB-
HSHb JPYTOT'O MOPSAKY

Pesrome

Hns nudepenniaabHoro PiBHSAHHA APYTOro HMopsaaKy 3arambroro sumy y' = f(t,y,y'), me
f i la,w[XAy, X Ay, — R — nenepepsna byukuis, —00 < a < w < 400, Ay, — onHOCTO-
pomnsiit okin Y;, Y; € {0,200} (¢ € {0,1}) posrnsmyTo nuranas icCHyBaHHA PO3B A3KiB, 151
AKHX &1&1 yD(t) = Y; (i € {0,1}). Cepexn MHONKMHM TAKHX PO3B’S3KIB BIIOKPEMIIIOEMO JOCTA-
THBO mmpokwmii kiac T. 3. P, (Yo, Y1, Ao)-po3s’a3kis. Takoro Tumy po3s’s3km paxime Gyso
yBeJIeHO TP BUBYEHHI jgpodiennoro pisaamuas Yy’ = aop(t)eo(y)p1(y'), me ao € {—1,1},
p: [a,w[—]0, +oo[-Henepeprra byukuis, ¢; : Ay, —]0, +00[ (¢ = 0,1) — HenepepsHi npa-
BUIHHO 3MiHHI ipH z — Y; (¢ = 0, 1) dbyskmii mopsakis o; (¢ = 0,1), oo + o1 # 1. Y mamiit
pobOTi BCTAHOBJIEHO YMOBY, 33 sKiil IpaBa YaCTUHA PIBHAHHS B JETKOMY CEHCi € OIM3BKOI0
upu Ao € R\{0, 1} ta t T w mo mobyTky aop(t)po(y), ne byHKIig o € MBUAKO 3MIHHOIO TIPU
y — Y. Ilpu Bukonanni miel ymoBu 3HAMAEHO HEOOXiHI, a TAKOXK JOCTATHI YMOBH ICHYBaH-
ust P, (Yo, Y1, Ao)-po3B’sI3KiB, BCTAHOBJIEHO ACUMIITOTHYHI 300pasKeHHSI TAKUX PO3B’SI3KiB Ta
X MOXIJHUX IIEPIIOTO MOPSAKY, BKA3AHO KiIbKICTh IapaMETPUIHHUX CiMell TaKUX PO3B’A3KiB.
Haseneno mpukiragr.

Karomwosi caosa: deouwaenne dudepenyianvhe pienanna, Po,(Yo, Y1, No)-pose’asox, acumnmo-
MuYHE 300padicenni Po36°A3Ki6, WEUdK0 3MINHG PYHKYLA, 00H0-, J6ONAPAMEMPUYHA CIM A

P036°A3%Ki6 .
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