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DIRECT SOLUTION OF THE DYNAMICAL ELASTICITY
PROBLEM FOR A QUARTER SPACE

The wave field of an elastic quarter space is constructed when one face is rigidly fixed and a
dynamic normal compressive load is concentrated at the point on another face. The prob-
lem was solved by the direct application of the integral Laplace and Fourier transforms
to the motion equations and the boundary conditions. This operation leads to the one-
dimensional vector inhomogeneous boundary value problem with respect to unknown dis-
placement’s transformants. The problem was solved using the matrix differential calculus.
A fundamental matrix and a decreasing solution to the corresponding homogenous matrix
equation were constructed with a basic residue theorem. A singular integral equation was
obtained in the process by satisfying unrealized boundary condition. Weakly convergent part
of the equation was summed up. The behavior of the unknown function had been analyzed
based on its mechanical sense. The form of unknown function was expressed as a series on
Laguerre polynomials. The original displacements’ field was found after an application the
inverse integral transforms.
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INTRODUCTION

An object such as a quarter space can be considered as a model for appro-
bation different approaches of solving the boundary problems of the elasticity
theory in static or dynamic statements before considering problems for the
infinite and finite plates.

One of the earliest works on the analyses of a three-dimensional wedge
problem can be found in works of Uflyand Y.S. [9]. The formulation of the
Paphovich-Neuber potential functions was developed for a general wedge by
Uflyand Y.S. in [10].

Steady state harmonic vibrations and waves in the elastic bodies considered
in the book of Grinchenko V.T. and Meleshko V.V. [3]|, which provides a broad

review of the literature on oscillatory processes.
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In the work [13] Zhang Z., Wang W. and Wong P. presented an explicit
matrix algorithm for solving 3D wedge problems under general surface loads:
arbitrarily distributed normal and shear loads. The arthors also discussed the
effect of wedge angle on internal stresses. A fast and convenient algorithm for
the solution of the elastic quarter-space contact problem was presented, which
uses discretization to form matrices to realize the overlapping solution process
for the elastic quarter-space.

In the work [5] Hanson M. T. and Keer L. M. determined the elastic stress
and displacement fields in a quarter-space under arbitrarily applied surface
loadings. The problem was formulated in terms of two coupled two-dimensional
integral equations. The integral equations contain a logarithmic singularity
with an unknown coefficient, which varies along the edge of the quarter-space.

In the paper 2|, Babeshko V.A., et. constructed an exact solution in the
first quadrant of a plane boundary value problem for the dynamic Lamé elas-
ticity equations, using the coordinate block element method, and expanded the
solution in terms of solutions of the boundary value problems for the Helmholtz
equation.

Alterman Z.S. and Rotenberg A. in [1] investigated the propagation of the
elastic waves for the case of an elastic quarter plane using the finite difference
scheme. A point-source emitting a compressional pulse was located along the
diagonal inside the quarter plane. Free-surface conditions were assumed on the
boundary lines, so that the problem was nonseparable. Complete theoretical
seismograms for the horizontal and vertical components of displacement were
obtained. The effect of different finite difference formulations for the boundary
conditions and the effect of different mesh sizes were studied.

New method of solving the spatial elasticity problems was proposed by
Popov G. Ya. in [6]. The method is based on introduction of two new func-
tions which expressed through the derivatives of unknown displacement. The
application of this approach leads to the system of two equations and sep-
arately solved equation. Using this method an exact solution for elasticity
problem for quarter space was obtained in [7; 11| in the static statement by
Vaysfeld N.D. and Popov G.Ya.

The dynamical problem for an elastic quarter space was considered in [12]
using the method, proposed by Popov G.Ya. In this case the unknown vector

of transformants of the displacement consists of two components, that is why
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implementation of the matrix differential calculus operates with matrices of
the 2x2 order.

The aim of this work is to solve the elasticity problem for the quarter space
in the dynamic statement directly with the method of the integral transforms
and evaluate difficulties and advantages that appear in both approaches. Note
that in [12] the problem was solved under assumption that unknown functions
are equal to zero, which made the problem basically equivalent to the Lamb

problem, and there was no necessity to solve an integral equation.

MAIN RESULTS

1. Statement of the problem

An elastic quarter space 0 < x, z < 00, —00 < y < oo with u — Poisson
ratio, G — shear modulus is under consideration. Normal dynamic compressive
load is acting on a boundary z = 0, concentrated at the point with coordinates
(a,b) while a boundary = = 0 is rigidly fixed. Displacements, u,(x,y, z,t) =
w(z,y, 2, t), uy(x,y,2,t) = v(x,y,2,1), u(z,y,2,t) = w(x,y, z,t), which ap-
pear in the medium are in the interest of investigation. The statement leads

to the following boundary conditions

0z|z:0 = 5($ - a)é(y - b)P(t), sz|z:0 =0, sz|z:0 =0,
u|x:0 = 07 U|z:0 = 07 w|x:0 =0.

(1)

Here 6(z) is the Dirac delta function. Zero initial conditions are assumed.

Unknown displacements satisfy the motion equations, written in a vector form

2 (0600 00\ _p (PP 0 o
Ox’ Oy’ 0z’ o2’ otz ot2 )

G

A(u,z,w) + = (2)

k—1

Here A — Laplace operator, kK = 3 —4u, p — density of the elastic medium,

ou Jv Ow

O = — 4 — + — — volume expansion. The following change of variables is
ox Oy 0z

introduced

z=x/a, = (y—">)/a, Z=z/a.

In this coordinate system axis § will be a line of symmetry and condition
of parity for vertical displacement take place w(Z,—y,z,t) = w(Z,y,2,t) .
Normal load (1) in these coordinates take form o,|.—o = a=26(z — 1)d(y)P(t).
Further symbol “waves” are omitted, implying the change of variables.

2. Reduction the problem to a vector one-dimensional problem.
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To reduce the given problem (1)-(2) to the one-dimensional one, the integral
transforms are applied, sin-cos- Furrier — with respect to a variable x, Furrier

— with respect to a variable y and Laplace — with respect to a variable ¢

uagp 2) oo | u(x,y, z,t) Ccos ax
Vagp(2) / / / v(x,y,z,t) sinaz | eYe Pldedydt  (3)
Wasp(2) 0 -0 0 |w(z,y,2,t)| \sinazx

during this operation initial conditions were satisfied. Motion equations (2)

and boundary conditions (1) take form

k+1 2
ugxﬁp('z)_ (F& 104 + 8% +p ) Wapp(2) + o 104“1:161;(2’)_
. k+1
— lzaﬁvagp(z) = ﬁuﬁp(O z)
k+1 .
vgﬂp(z)— (oz2 + — 152 +p2> Vapp(2) — 1zﬂw/aﬁp(z)+
) 4
+f€ 1za5uaﬂp( )=0 ()
" k—1 2, .2 2
wa,@p('z)_ﬁ_’_ 1 (Oé +ﬁ +p )waﬁp( ) K+ 1Z6Ua,3p( )
2
g 1au/a6p(z) =0
(0 <z < oo,

Here notation was used p = p./ca, px. — parameter Laplace transform, ¢y =

\/G/p — propagation speed of transverse (shear, secondary or S-) waves.

awapp(0) + ugg,(0) = 0, —ifwapp(0) + Uagp((l)) =0,
_iﬁ [auaﬁp( ) + /Lﬁvaﬁp(o)] + waﬂp(O) = %CTZ sin o (5)

P, = [ P(t)e P-'dt.
0

Boundary condition u(0,y,z,t) = 0 was not realized. Let’s denote unknown

function at right part of equations (4)

X5(2) = ujg, (0, 2). (6)
In order to rewrite the system (4) in a vector form, the unknown vector of

transformants and the vector of right part are introduced

T
e 00) L

Y(2) = (tagp(2) Vaspl2) wapp(2))T E(z) = (

K —
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and also constant matrices

0 0 ﬁa
Q= 0 0 —-Lip
—wre —mrs 0
_(H+1 2+52_|_p) ~-2iap 0
P= 2_iaf _( n+1/32+p> 0
0 0 —i51 (@ + 8%+ p?)

So, the system (4) is written using the differential operator of the 2d kind

Loy(z) = Iy"(2) + 2Qy’(2) + Py(z) = f(2), 0 < z < ¢ (8)

So, the vector one-dimensional boundary problem was obtained in form (8),
(5) with respect to unknown vector of transformants (7).
3. Solving the vector boundary problem.
Solution to the vector problem (8), (5) was constructed in a form |[§]
o0
y(2) = [ (- OO+ Y_(2)C, (9)

0

where ®(z — £) — fundamental matrix, C = (C; Cy C3)T — constant vector,
should be found from the boundary conditions (5), Y_(z) — general decreasing,
when z — oo, solution to a matrix equation LY (z) = 0.

Characteristic matrix to the equation (8) has a form

52— (’“Ll a? + B2+ p? ) —Liaﬁ
M(s) = H@aﬂ s? — (oz + ”+1ﬁ2 +p )
—%Hozs K+1ZBS
2 as
—izﬂs

SZ—TH(OC +62+p)

The decreasing solution
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was constructed on the basis of poles

—1
s1 = — N2+z+1p2a 52:_\/N2+p27 N22042+,82,

where s1 is a pole of a first kind, so is a pole of a second kind, of an inverse

characteristic matrix

MA(s) Al A Az
M1(s)=——+, Mis) =

(s) dot M(s)’ (s) jm jm ng

31 Az Asz

A12 =
K

Aoz = 12'55[52 — (N2 +p?)], Az = 1a5[32 — (N? +p%)],
Azg = 1i,88[82 — (N2 —|—p2)],
A = [ = 0 (@ 24 ) | 12 - (v )

and have a following form

Y_(2) = Y¥ (2) + YO (2), (10)
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2 .
o b
1 R Al Al k—1
Az . 2
Y-(2) = 2p2€ _% Bf _ntl,g
Al Al k—1
: +1
—a =i = A
2 2 .
e A A o
AQ AQ rk—1
1 - 2 2
+——e A2z % _ﬁ Tp L#-lw ,
2])2 A2 A2 rk—1
2 2
o 18 w1 & 5
r—1 AQ

functions A1, As have a form

-1
AlZ\/N2+H+1p2, Ay = /N2 +p2 (11)
K

To construct a fundamental matrix, the definition can be used. According to

it, the solution to the equation Loy(z) = f(z), 0 < z < oo, related to (8), can

be written in a form
o0

y() = [ 1O - i

0
®(z —¢) — fundamental matrix. To solve the equation, continue the right part
of it by zero for z < 0 and apply the integral Furrier transform

00
Vs = / €%y (2)dz

—oo
Taking into account, that from a relation Loe’*I = e**M(z) follows Loe®*] =
e**M(is)

Ly / ¢y (2)dz = / ¢ (£) e,
/ eiszM(iS)y(z)dz = fs: M(is)ys - fsv Vs = Mil(is)f&

After an application the inverse integral transform to the last relation

o0

_i ! -1/, —i82 Jo L 7 —1/:.\,—s(z—¢&)
y(z)—Qﬂ_ /M (is)fse ds—/f(ﬁ) 5 /M (is)e ds | d¢

0
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and comparing it with the definition, resulting formula was obtained
i e}
®(z—-¢) = L / M~ (is)e (=8 s,
2

Characteristic matrix has a form

—_s2 — (H+1a2 ‘1'52 +p ) —L’L'Oéﬁ
M(is) = —2-iaf —5% — (a + 54182 4+ p )
%Hiozs —K—Hzﬁs
—%ias
2
—w=1Ps :
MA (is) Apn A A
M 1(is) = ————— MA4(is) =
(is) dot M(is)’ (is) A1 Az Aoz |,
A3z Aszp Ass
Ay = 2 2 K~ 1 9 2 L N2 2
11 F +< 1 +ﬂ‘+ﬁ+1p [s° 4+ N* + p7]
App = — 1iaﬁ[32+N2+p2], Az =— ias[s® + N2 + p?,

Agz = 255[82 — (N2 +p2)],A31 = zas[52 + N? +p2],
A%:—z Bs[s® + N? + p?
k41 ’
k+1( o o K—1, 2 2, 2
Asz = _— N
33 [S-F 1<a + toP [s° + N+ p],

2 2
det M(is) = [s—i\/NQ—i—pﬂ [s+i\/N2+p2}
-[s—zvNQ—i-"ﬁpQ} {s—l—u/N? Hlp}
—1
s1=—i N2+ —p2 sy = —in/N2+p2,

/1—|—1
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/ -1
83 =1 N2+K+1p2, 84:i\/N2+p2
K

Using Jordan lemma, closing contours in the upper and lower half-planes,

the main theorem on residues, taking into account the kinds of poles, resulting
formula take a form

S

i M~ (is)e 8 ds =

—00

i[Res(s3) + Res(sq)], 2—€ <0
—i[Res(s1) + Res(s2)],z =& >0

Fundamental matrix was constricted

a? + p? iaf
— A, A, sgn(z — 5)%04
—Aglz— {16’ 2 4 p?
B (2—&) = gpe 2l Af i A2p —sgn(z — §)EHip |t
o2+ 32
sgn(z —§)a —sgn(z —&)if L 0
AV
a? iaf3
— —sgn(z — &)ty
+——e 21lFT a3 B _
2p AL A sgn(z — §):—ﬂzﬁ
—sgn(z —§a sgn(z —§)if EELA
The solution (9) can be rewritten in a matrix form
Uagp(2) 1 o $11 P12 P13 5t xs(8)
Vapp(2) | = 22 J {921 22 o3 0 d§+
D= 0
Wasp(2) 31 P32 P33 0 19
yll 12 13 o (12)
+— v 4?2 2| | C

2p?
vtoy? y®) \Cs

So, transformants of displacements can be written as

1 o 1

Uapp(2) = %@of P11x5(8)dE + @(yilcl + y12Cy + y13C3)
1 o 1

Vapp(z) = %i@g pa1x5(8)dE + 2?2(1/3101 + y?2Cy + y*C3) (13)
1 oo 1 ]

Wapp(2) = %Tpgg P31x5(€)dE + @(y?ilcl + y32Cy + y¥3Cs)
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where
2 2 9
o1 = e r e~ Relz=El ¢ efﬁl\zfélai,
2 Al
1 1
¢21 =iaf 7€—A2|z—§\ — 76—A1|Z—§|
AV 1

¢31 = asgn(z — §)[em 2178 — emArl=me]

Components y? of the decreasing solution are given in (10). To find unknown

constants in the solution (13), a system of equations was obtained after satis-
fying the boundary conditions (5).

N2+ 24 Ly
251 A Ag| O + 254 A Ag| Cy +p?Cy =
= %% sin P, + B
2 +1 2 —
p°C1 2: TQ Al — A, Cs = By
N2 + 1,2
20 + 2H+1’Lﬂ A1 — 2P (3 = Bs
Ag
Right part of equations has a form
Bi=a [ xs() [200e 82 — pe—“] d,
0 Ay
oo
By = EH [ v5()[(202 + p?)e 228 — 2a%e~A18]dE,
0

By = 2”—:2046 :foxg(g)[—eA25 + e*Alg]dg.

Determinant of the system is

p2
A A [A AQ - ]Aa

A =4N* + 4N2p2 +p* —ANZ2A 1 As.

det =



210 Fesenko A. A.

After solving the system constants were found

A1[A1 Ay — (N? + 3p?)]

Cy = %a sin a P, [AAs — NIA +C7s
Cy = —22iBsin aPpAI[A[IA?Z;_(A;QTA%pQ)] +C7,
Cy = %p—z sin P, [AlAA;_Aj\f?]A +CB,
cf = +M7o Xl (A — P Alg)e™b

+(p*A1Ag + 20%p? A1 Ag)e 18] dE,

B o0
[AlA:a—NﬂAOfX,B(O[MﬁAlAQ _ A)eBat4

+(4p4A1A2 + 8N2A1A2 — A)B_Alf]df,

B __ k+1
02 T k-1

B _ alg v 4 4nr2 A\ —Agt
0y = A, — NIA NQ]Agm(&)[(ﬁlN AN=A1Ag — p*le™ 025+

+(4p4A1 Ag — A)e_Alg]df.

Transformants of the displacements can be written in a following form

(tap(2) Vapp(2) wasp(2))" = (uasp(2) vagy(2) wapy(2)"+

+(uagp(2) vapy(2) Wapy(2)"

Where additions ugﬁp(z),vgﬂp(z),wgﬁp(z) correspond to the solution, which
include intensity of the acting load P,, and additions with an upper index “1”
include an integral with the unknown function xg(¢) in (6). Transformants

with an index “0” have a form

sina P,
Ugﬁp(z) = QEKP[2A1A26_A2Z _ (2N2 +p2)e—A12]7
sin o P,
Vapp(2) = iﬁaf[2A1Age*A2z — (2N? 4 p?)e—A17) (16)
sinaa A
’wg,ﬁp(z) = prxleQQ_Azz _ (2N2 —|—p2)6_A12].

It can be easily seen that transformants coincide with ones, obtained with
the method of Popov G.Ya. in [12]. Difference is in sign, because a compressive
load is here in the statement of the problem in contrast to a stretching load

in that investigation. Using the relation (13), so as components of decreasing
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solution (10) and constants (15), transformant of interest for displacement was

constructed

o) = 24 P e
-4 g~ Olxs(E)ie (1)
il OO )Xﬁ(g)df + waﬁp( )

To find the initial vertical displacement the inverse integral transform

should be applied

[ olNe o)
w(z,y,z,t) 22 / / /w 2)ePle Y sin axdp,dBda,
w2 21
—oo 0

I = (A —ioo0, A + ioco) Algorithm of conducting a component wy(z,y, z,t) was
considered in [12], and related to the solution of the Lamb problem.

4. Reduction to the singular integral equation.

An integral equation was constructed, based on the fact, that the boundary
condition u(0,y,z,t) = 0 in (1) has not been realized yet. Considering the
solution uqpp(2) in (13), rewrite it in the form

1OOO£2 2

«
_ ktl Az —As]z—=¢] _
uaﬁp(z) K— 2p (]f Ale AQe Xﬂ(g)dg
2
Catt TR sl ) + (4110 + 5120 + yCy)
12y A g U= C1Hy=Catys

or after substitution values for constants (15) and elements of decreasing solu-
tion (10)

042

Uaﬁp( il Of —Allz—f\ _ EG—AQIz—ﬂ Xﬂ(f)dg'f‘

o0

iTﬁf z£m®@+“122g Xa()dE + 105, (2),
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where
2 2
p j%
F1(2’7€) = —EG—AQLZ_H _ Ee—AQZe—A2€+
+N? ie—ALz _ ie—Azz _ A2(€—A1z _ e—Agz)e—A2§
Al AQ )
F2(27£) = (p2[A2e*A12 _ AlefAzz]'

[A1Ag — N?|
[ANZe218 4 (4p® + 8N?)e~ D28+
+Ag[e™ 817 — emB22][(AN? — AN2A1Ag — ph)e D18 4 4p2Ag Age™B28])
After an application the inverse cosine transform Furrier with respect to the

variable o to the solution uag,(2) and changing the order of integration

1 1 2 o0 o0 2 2
1 LEEL S 2 ~Aile—€] X Aol dod
ug, (T, 2) 1 2p27T/X’8(§)/ [e A e A, cos axdad§
0 0

consider the inner integral with respect to the variable o, which can be calcu-
lated using the table integral Ne 3.961(2) in [3]

T e—Va2+82|==¢|

/ oz gz cosowda = Ko(|flVa? + (2 = £)%),

0

Ko(z) — Macdonald function, taking into account that a? cos ax = —(cos ax)”
and a form of the functions A, Ay, defined in (11)

(e 9]

2
h,2) ~ (—i) [ XK1/ 5 (= )~
~Ko(2y/22 T (=~ O], ()
Yi=/B2+51p?, To= /B2 +p?
Direct verification can approve the correctness of the relation
0? 0?
520 (VB +PPV27 + (2 = ) + 55 Ko(V B2 +p°V/2% + (2 = ©)) -
—(8% + P Ko(v/B% + p* /a2 + (2 = £)?) = 0

After an application this relation to (18), it was rewritten in a form

2

1 0 00
“ép(fﬂa z) ~ %f}rpz (azg - T%) beﬂ(ﬁ)KO(Tl Va? + (2 — &)~

1 [ 0? o
—1s (azz - T5> [ X ©Fo(Tay/a% + (= )i,



The dynamical problem for the quarter space 213

Here the value x = 0 can be fixed

1 [ 0? 00
uhp(0,2) ~ %TPQ <8zz - Tf) OfXB(f)KO(Tl‘Z — &])dé—
k+1 1 82 2 i
el T3 {XB(S)KO(T2|Z —&|)dg.

So, the integral equation for the unknown function xg(z) = uj,(0, 2) has been

obtained

(@ \T
52 1 /Xﬁ(é)Ko(Tl\z_gy)dg_

™
0

1/( 62 , o0
022 T3 /Xﬁ(f)Ko(Tglz — ¢)de+

™
0

5 %2 00 P2 e "
2w ] (—Aze s (19

2

o 1
+ a?Fl(z,6) + KFz(z, €+ ZF""’(z, g)) dod€ =

&9]
—12p%P, asin o
- Z+ e | TR ICN et = 28 A8 da
0

Here A is defined in (14), A;,;i = 1,2 —in (11), T;,i = 1,2 — in (18),

2
[AjAy — N2FY(2,€) :_%e—Azze—A1£+ﬁ2
2

ie_Alz _ ie—Aﬂ e~ A28
Aq Ao
1

1
_N2 7€7Alz _ eAQZ] e*Alﬁ _ A2 [e*Alz _ e*AQZ]engg,

Aq As

[A1dg — N2JF2(2,6) = fI(N)e S27e 316 4 f2(N)eSase-o6 1
+f3(N)€—A1z€—A1§ 4 f4(N)6_A126_A2£,

fYN) = 4A1p* + AN P?’ A — Ag(AN? —ANZA1 Ay — p?),
1
fA(N) = —p*A1Ay — AN?(N? + in — A1 Ay) — 4p2 A Ay,

FIN) = —AN*P2Ag + Ag(AN? — AN2A1 Ay — pb),



214 Fesenko A. A.

1
FHN) = AN?p2 A1 A + p* A1 Ay + AN (N? + §p2 — A1Ay) — 4p* A1 Ao,

Aoz — 1
Ao[A1Ay — N?|F3(2,€) =pPe 222e 22 piA Ay — 452(]\724‘5192 — A1A9)?).

Analyzing the unknown function in the integral equation (19), it can be seen
that

k—+1
k—1

9 1
X,B(Z) = ulﬁp(oa Z) ~ %U(anw%t) = <G > Ux(oyyaz)

So, the behavior of the function xg(z) = uj,(0,2) is the same as a behavior
of a normal stress 0,(0,y,z) while z — 0 . Normal stress tends to infinity
according to a power low with an exponent equal to —y(y < 1), which depends
on a Poisson ratio p of the medium.

The unknown function is represented as series
Xa(§) = D _wn(B)e €L (26)
n=1

where L%_v)(Zf) — Laguerre polynomials, z,(f) unknowns. This correspon-
dence should be substituted into the equation (19) with the following applica-
tion the method of orthogonal polynomials. After that, the unknown function
X3(2z) should be substituted into the expression for the vertical displacement
(17).

CONCLUSION

The dynamic problem for the elastic quarter space was solved by the di-
rect application of the integral transforms to the motion equations and the
boundary conditions. This operation reduces the initial problem to the one-
dimensional vector boundary problem, which was solved with the help of a
matrix differential calculus. In this case all needed matrices, such as decreas-
ing solution and fundamental matrix turned to be 3 x 3, so as a system of
equations for finding constants in the solution, which significantly complicates
calculations, if compare with application of the method of Popov G.Ya., where
all needed matrices were 2 x 2 order. In the process an integral singular equa-
tion was derived by satisfying a remaining boundary condition. Components

of displacements which include the intensity of the acting load coincide with
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ones, obtained earlier by the method of Popov G.Ya. The future investigation
will be deducted to the analysis of the steady-state oscillations and displace-

ments which appear in the medium under acting distributed load.

Decenxo I. O.
BESHOCEPE,HHG PO3B’SI3AHHSI ,ZLI/IHAMI‘{HOT SAJAYI JJIA TIPY>KHOT'O YBEPTBH ITPOCTOPY

Pesrome

TToGymoBaHoO MoJIE TEPEMIIIIEHD Y TIPY?KHOMY YBEPTBb IIPOCTOPY, KOJIU OJIHA IPAHUIS KOPCTKO
3aKpinyieHa, a Ha iHIIIN i€ JUHaAMiYHA HOpMAJIbHA CTUCKAJIbLHA CUJIA, 30CEPEIKEHA Y TOUIII.
Sazaty O6y10 po3B’s3aHO i3 3aCTOCYBAHHSAM METOMAY iHTerpajbHUX IlepeTBOpeHb Jlamaca Ta
Dyp’e 6e3rI0CEePeIHBO 10 PIBHAHD PYXY Ta IPAHUYIHUX YMOB. 1le Tpu3BOAUTH 10 OMHOBUMIPHOT
BEKTOPHOI HEOJIHOPIAHOT KpailoBOl 3a/a4i Bi/IHOCHO HEBIIOMUX TpaHCHOPMAHT IEPEMIIeHb.
IIro 3amauy po3B’s3aHO 3 JOTOMOIOK MATPUYHOIO JMepeHIiaIbHOro uncieHds. PyHaa-
MEHTaJIbHA MATPUIlA Ta CIAJAI0YNil PO3B’SI30K BiAIOBIIHOTO MATPUYHOTO PIBHSHHS Oy/In
mobymoBaHi 3 JIOMOMOTOI0 OCHOBHOI Teopemu mpo Juiiku. CHUHTY/IsIpHE iHTerpajbHe PiBH:-
HHsl OTPUMAaHO y mporieci peasizamnil rpanndsoi ymoBu. Ciiabko 361KHA YacTUHA PIBHIHHS
OyJia mijicymMOBaHa i3 BUJIJIEHHSIM CHHIYJIsIpHOrO siipa. IloBemiHKy HeBiloMOl y iHTerpaJib-
GbYHKITO TOAAHO Y BUIVISAL psay mo mosinomam Jlareppa. Opurinas BepTHKaIBHOTO mepe-
MimmeHHsT OyJI0 OTPUMAHO IIiCJIsI 3aCTOCYBaHHS OOEPHEHNX IHTErpajbHUX [T€PETBOPEHb.

Karouosi caosa: npystchuti weepmsb npocmip, THME2PasoHi nepemeoperhs, OUHAMINHE Ha-

BAHMANCEHHA MAMPUYHE OUPEPEHUTANDHE YUCAEHHA, CUNSYAADPHE THME2PANDHE DIBHAHHA.
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