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THE DYNAMICAL PROBLEM ON ACTING DISTRIBUTED LOAD
ON THE ELASTIC LAYER

The wave field of an elastic half-layer is constructed, when a dynamic normal load distributed
over a rectangular area acts on upper face at the initial moment of time. The lower face of
the half-layer is rigidly fixed to the foundation, and the side border is in the conditions of a
smooth contact. The method of decomposing the system of motion equations into a system
of equations and an independently solvable equation is used, this approach was proposed by
Popov G. Ya. Laplace and Fourier integral transformations are applied directly to the motion
equations and boundary conditions, which reduces the problem to a vector one-dimensional
boundary value problem, which is solved by the matrix differential calculus method. The
output displacements are obtained using inverse integral transformations. The case of steady
oscillations was considered and the amplitude of vertical displacement occurring in the layer
was analyzed depending on the shape of the distributed load section, the material of the
layer medium and the values of the natural frequency of the layer oscillations.
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INTRODUCTION

Dynamic problems of the elasticity theory are solved for during construction
to obtain the displacements in elastic bodies. Displacements lead to damage
or deformation of the structure. Therefore, in mathematical physics, many
authors solve the problems of the elasticity theory. Popov G. Ya. developed
the method of presenting the Lame equations through two jointly and one
separately solved equations in his work [7]. The exact solution for the mixed
problem of the elasticity theory was found in [8]. Also, Popov G. Ya., in
collaboration with Vaysfeld N. D [10]., found a solution to the Lamb problem
using this method. In [15], a solution was found for semi-homogeneous and
non-homogeneous problems of the elasticity theory for a semi-infinite layer in a
static formulation. Dynamical problem for an elastic quarter space was found
by Fesenko A. A., Bondarenko K. S. in [3]. Dynamical stresses in elastic half-

space were analysed in [16] by Winfried Schepers. Plane contact problem on
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the pressure of a stamp with a rectangular base on a rough elastic halfspace
was considered in [12]. Also, solution methods of dynamic problems have been
described at book [11]. Some problems of the elasticity theory for an elastic
layer were solved in [1; 5; 6]. Also, a solution was found for the dynamical
problem for the infinite elastic layer with a cylindrical cavity by Fesenko A. A.
in [2].

The aim of this work is to obtain the exact formulas for displacements that

appear in a elastic layer when a dynamic compressive load acts on upper faces.

MAIN RESULTS

1. Statement of the problem. Consider the elastic layer z > 0, —oco <
y < 00, 0 < z < h. The dynamic normal load is acting on the boundary of
the layer z = h along the rectangular zone 0 < z < A, —B < y < B. The
smooth contact conditions are set at the side boundary x = 0. The boundary
z = 0 is rigidly fixed. It is necessary to find displacements of the points of the
layer U(z,y,2,t), V(z,y,z,t), W(z,y,z,t) with zero initial conditions. The

statement, leads to the following boundary conditions

Uz(xaya h7t) = —p(.ﬁC,y)P(t), 0<z< A; -B < y < B,
sz(xuya h,t) =0, sz(CU,y, h,t) =0,

U(z,y,0,t) =V(x,y,0,t) = W(z,y,0,t) =0, (1)
oV (0,y, z,t oW (0,y, z,t
U(0,y,z,t) = ( e ) = (8:6 ) =0.

The motion equations in vector form have the form |[7]

2 <a@ 90 a@> P <82U 2V 82W> -

AV W)+ = 9z’ 9y’ 9z ) o2 912 o2

G

Where A — Laplace operator, k = 3 — 4u, ; — Poisson’s ratio, © = % + g—; +
%—f — volume expansion, p — material density, G — shear modulus.
To obtain a solution to the given problem, it is necessary to obtain a solu-

tion for the dynamic force concentrated at an arbitrary point on the boundary

z=~h

p(z,y) = —6(z — a)d(y — b),

where § — Dirac function, and then distribute it over the required area.
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Let’s introduce new functions [7]

0 0
Z('Ia Y, Z) = 7U([L‘, Y, Z) + 7V(3’J,y, Z)a

ox y
~ 0 0
Z(Sﬂ,y, Z) = %V(ﬂf,y,Z) - %U(xvyvz)'

Then the system of motion equations (2) and boundary conditions (1) taking
into account the new functions will be rewritten in the form:

2 0 OWN  (k—1) p O*W
AW <Z+ 8z>_(l£—l-1)G o2 3)

k—10z

2 ow p 0*Z
AL+ Ve (“az) = Gor
~ 92z
A7 = — 4

0
VaeyW(z,y,h,t)+ aZ(a:, y,h,t) =0,

k—1

_75(3;—61)5(1/—5)13(’5)7

0
%W(:m Y, h7 t)

Z(I7 y7 07 t) = Z(x7 y7 07 t) = W(‘/'E’ y? O) t) = 07 (5)

(B3—k)Z(z,y, h, t)+(1+K)

0 ~
—7 h,t) =
Ep (xaya ) ) 0,

0 0 -
aw (07 y”Z?t) 8:6 (O’y’ Z? t) (0’y7 Z? t) 0’

where Vg, = 88—; + 68—;2
The initial boundary value problem takes the form (3)—(5) under the initial
conditions
~ ) ~
[W,Z,Z} ’ —0 2 [W,Z,Z} ‘ —0.
t=0 ot t=0
After finding the functions W, Z, Z to find the displacements U and V the

Poisson equation should be solved

B o ~ B 0 =
wU=—0——7, Vo V=—0+—7.
Vel = 5.7 = 5.7 YV = 5 2+ o (6)

2. Reduction the problem to a vector one-dimensional problem.
The cos - Fourier transform with respect to the variable x, the Fourier trans-

form with respect to the variable y and the Laplace transform of the variable ¢
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with parameters «, § and p, respectively are successively applied to the (3)—(4).

(e oluNe ele o]

s =

where N? = o? + 2.

W(x,y,z,t)

PV cos ax e Pt dy dx dt
(z,y,2,t)

The function Zagp(z) satisfies the homogeneous problem

20 50(2) = (N2 + p*) Zagp(2) = 0, 0 < 2 < h, Zg,(h) =0, Zapy(0) =0 (7)
and therefore Z(m,y, z,t) = 0.

3. A case of steady-state oscillations. To consider a steady-state
oscillations suppose that load applied across the area 0 < z < A; —B <y <
B over the plane X0Y changes according to the harmonic law P(t) = ™!
and p(z,y) = P, where P — constant intensity of the load, w — is a natural
frequency of vibrations. In this case, substituting into the system of equations
and boundary conditions p = iw according to the [4].

Let’s introduce the values

2 9 (1)
1 — sy vy — )
G k+1 G

(8)

where ki, ko — the wave numbers.

The system of equations (3) and boundary conditions (5) take the form

"o, 2 ok —1
Waﬁ(z, kl,kz) + 1 O(ﬁ(z k17k2) N o + 1

+k72Wa5(Z; ]{71, k‘Q) =0 (9)
2 +1
bz k) = —— NPW (=i kr, k) — NZZ_ Zop(z: k1, ko) +
+k1 Ocﬁ(z; kla k?) — 0)

Wap(z; k1, k2)+

—N*Wopg(hi k1, k) + Zlz(h; ki, kg) = 0,
k—1
G " (10)

(8 = k) Zas (s ki, ko) + (s + D)W (hi ko, k) = —

Zap (05 k1, ko) = Wop(0; k1, k2) =0
N?=a%+ 62.
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To reduce problems (9) (10) to a vector one-dimensional one, an unknown

transform vector of displacements is introduced

Was(2: ki, @))

V(2 k1, ko) =
Zap(z; k1, k2)

as well as matrices

10 () J— =l k2 0
I= . Q= RAL) P o= [ et ., T=|"7? .
(0 1) ° (‘ﬁNf 0) (0 ) (0 K

So, the system (9) and boundary conditions (10) takes the form

LQ}_"(Z; k1, k?z) =0,0<z<h,
UO[S;(Oa klu k:Z)] - 907 (11)
Uy[¥(h; k1, k2)] = ©1,

where the differential operator Lo has the form
Loy (2 k1, ko) =13 (2; k1, ko) + QY (23 k1, ko) — N°P¥ (23 k1, ko) + T¥ (23 k1, k).

Let’s enter matrices and vectors

(0 wla) (ot o)
0 (3—r) (1+£K) 0

P(k—1)
G

where symbol T means transported vector. Edge functionals are

0 = (0,001, ® = (0, - cos aae®)T

Upy] = Iy(0; k1, k),

UL [y] = A¥(h; k1, ko) + By (hs ky, ko).

The solution of the vector equation (11) is built on the basis of the solution of
the matrix equation Lg [Y(2)] = 0. Substitution Y (z) = €V*I is made to form
the characteristic matrix M(s) = Is?> + Qs — N2P + T. The inverse matrix
has the form
M) = (sz_NQm% i z>,
+ k3

[Tizi(s —si) %]\ﬂ 52_N2%
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s1=1/N2—k3, so=—\/N2—k3, s3=1/N2—k? sy =—/N2—ki.

Here s; (i = 1,4) are the roots of the characteristic equation det[M(s)] = 0.

The solution of the matrix equation is constructed according to the formula
9]

1
Y(z) = — ¢ M (s)d
(Z) 271-2 \%‘6 (S) 87
C
where C' is a closed loop covering all zeros of the determinant of the matrix

M(s). The residues at the poles s; and s3 give an increasing solution that has

the form
(k+1)N2 (k+1)
Y (2 k1, ko) = L ehr _(“_1))A1 I eh2? (o= 82 12
y vl - 2 Kt+1)N2 2 _(r41) ;2 N7 ’
2k1 S M) 2R N,

The residuals at the poles so and s4 give a solution that descends.

2
1 (k+1)N 1 1 _ (K‘Fi) AQ 1
Y (2 ki ko) = — e—Alz (r—1)Aq _ e—Azz (r—1)
( s V1 2) Qk% (r+1)N2 A Qk% _ (st1) pr2 N2 )

(k—1) (k—1) Ao

where Ay = /N2 — k2, Ay = \/N? — k3.

The solution of the vector equation (11) is constructed in the form

¥(2) =¥o0) + ¥0y,

where ¥;, ¢ = 0,1 - the fundamental basis matrices of the solutions, ®;, i =
0,1 - the right-hand parts of the boundary conditions.

The fundamental basis matrices is constructed through the fundamental
system of solutions of the homogeneous differential equation (11), using the
formulas ¥; = Y_(2)CY+Y_(2)C}, i =0,1. C?’l, — are matrices of unknown

constants [9]. The matrices of unknown constants can be found from the

relations by satisfying the boundary conditions U;[¥] = §;;14,j = 0,1
Ci = (Ui[Y1(2)] = Ui [Y_(2)] - (Up[Y_(2)]) " - Up[Y_(2)]) ",

CY = —(Uo[Y_(2))) - Uo[Y+(2)] - C1,

2
1 _ (k+1L)N 1 (K+1)A2 1
UolYi(2)] =5 [ [ =05 )+ G0
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2
1 (k+1)N 1 (Kf"}) AQ 1
UolY- ()= o (0 ) )+
2 k+1)N2 (r+1) A2 N2 ’
2k1 ¢ )1) —Aq DV Ay

(r—

1[N (R4 A ) edih = 2n,00e0)
Ul[YJr(z)]:_@ 2_Aih 2 1.2\ LAsh
1 \(k+ 1) (—2NZeP1h 4 (2N? — k%) e22h)
(2N? — k}) eArh — 2N2eh2h

(k— 1) <—2A16A1h + A (2N - k2) eA2h)

Uiy (] = L (EV? (2800 = (I o) o)
1Y - =—53
26T \(k + 1) (—2N2e~81h 4 (2N2 — k2) ¢~ A2h)
(2N?% — k?) e~ Bl — 2N2e=A2h )

(k— 1) (2A16—A1h — L (2N2- ) e‘AQh)
Taking into account that Ug[Y_(2)] 71 Up[Y 4 (2)] = —I we get that C}=CY.
Since ®¢ = (0,0) then ¥q is not of interest. Matrix ¥, has a form

1 ”'H (AQ sinh Agz — N2 inh Alz)
\Ill = — l

2]% cosh Agz — cosh Az
542 N2 (cosh Ay z — cosh Agz) cl
A1sinh Az — X—z sinh Agz r

After simplification, expressions for the transformants were found

A
Wag(z;kl,kg):—cos% 2[(A Assinh Agz— N? smhAlz)

X (2N2 cosh Ayh— (2N2 k:2 cosh A1h )—i—
+N? (cosh Agz—cosh A1 2) x
((2N2 kQ)smhAlh 2A1AQSIHhA2h)] (12)

N2
Zaﬁ(z;kh]@):_cos% —[A1A (cosh Az —cosh Agz) X

X (2N2 cosh Agh — (2N? — k7) cosh At h) +
+ (AlAQ sinh A1z — N?sinh Agz) X
x ((2N? — ki) sinh Ajh—2A1 Ay sinh Agh)]

A = AN?A1Ay(2N? — k3) — (8N* — AN?k? 4 k)AL Ay cosh Ak cosh Agk+
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5k — 3
k4
TR /<a+1)

93k +1

1 sinh A1k sinh Ask.

+ N?(8N* — 4N?k?

Based on the formulas (6), (7), the transformants of the remaining displace-

ment were found

[0
O Zap(zih1, k), Vas(zi b1, ko) = o Zag(z: b, o).

Thus, an exact solution of the vector problem (9) (10) in the space of trans-

Uap(2; k1, k2) =

formants was obtained.
4. Construction of original solutions.

Let’s introduce functions dependent on N

Fyw (N, z; k1, ko) = [(A]_AQ sinh Ayz — N2 sinh Alz) X
X (2N2 cosh Agh — (2N?% — k) cosh Arh) + N? (cosh Agz — cosh Ay z) x
x ((2N? — ki) sinh Ajh — 2A1 Ay sinh Ash)]

Fz(N,z; ki, ke) = [A1Ag (cosh Az — cosh Agz) x
X (2N2 cosh Ash — (2N2 — k:f) cosh Alh) + (AlAz sinh Ayz — N?sinh Agz) X
x ((2N? — ki) sinh Ath — 2A1 Ay sinh Ah)] .

After applying inverse integral transformations to the solution of (12), the

original displacements were obtained

Wz, y, z; k1, k2) = e / /iFW(N,z) cosaae PU=Y cosax dB da,
o 0

V(x,y, 2z k1, ko) = 7r2 o // —Fz(N,z)cosaae” By cos ax dB da,

—oo 0

Ul(zx,y,z; k1, ke) = G7r2 2 // “—Fz(N, 2) cos aa e PV cos ax df da.

—oo0 0
Using the parity of the function related to the variable o under the integral

and applying Euler’s formula, the displacements are rewritten in the form

Wz, y, z; ki, ko) =

/ / —: FW N, 2) *m(aﬂ)*iﬁ(y*b)dﬁda’

—00 —O0

4G772
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Vi@, y, 2k, k) = / / —Fy(N, z)e telo=2)=iBly=b g o,

—0o0 —O0

4G7r2 Ay

P o [ [N? | 4
U(x’y’Z;kl’@)__élGﬂ?@x/ /AFZ(N%)em(ax)Zﬁ(yb)dﬁd@

—00 —O0

In order to get rid of the double integral by the parameters of the Fourier
transforms, the relation connecting the Fourier and Hankel transforms was
used [13]

[e.9]

A .
/ /F< a2+52+xz) —zax—lﬁydadB:/SF( /82+X12)X
—00 —00 0
X Jo(sv/x? + y?)ds,

where Jy(s) is the Bessel function, x; = k1, x2 = k2. After simplification, the

displacement formula takes the form

Wiey,zihishe) = o [ D92 [/ al + (= 0P+

+Jo(sv/(z +a)? + (y — b)?) | ds,

Vi sihihe) = g2 [ 28D /T = P + 0P+
0
+Jo(sv/(x +a)2 + (y — b)?)| ds,
Ui k) = s [T (s /= o + (= 0P+
0

+Jo(s\/ (x4 a)2+ (y — b)?)| ds,

Fy (s, z) = 09 [((5152 sinh 832 — s% sinh 51,2) X
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x (2s* cosh doh — (2s* — ki) cosh d1h) +
+ 5% (cosh 63z — cosh 61 2) ((252 — k?)sinh 61 h — 20105 sinh 52h)] ,

Fz(s,2) = N?[6165 (cosh ;2 — cosh §22) x
x (2s? cosh doh — (25® — k7) cosh 01h) +
+ (5152 sinh 512 — 52 sinh 522‘) ((252 - k%) sinh 51h — 25152 sinh 52h>] s

Ay = 4526102(25% — k?) — (8s* — 45%k? + k16182 cosh &1 h cosh dah+
93Kk +1 ok 5k — 3
Lr+1 Y+

where 6 = \/s2 — k}, 6o = \/s% — k3.

Using the parity of the Bessel function Jy(s), we will continue the integra-

+ 5° (854 — 45k > sinh & A sinh 8o,

tion in an odd way to the interval (—oo, 0), we will find the displacement from

the load distributed over a rectangular area

A B o
P o Fyz(s,z
VAB(fv,y,z;kl,@)__way/// ZL )
0 —B—

A B o~
P 0 Fy(s,z)
AB . _ - Z ) .
U ($7y’z’k17k2) - WG@J:// / As §X
0

x [Jo(s\/(x—a)Q—i—(y—b)Q + Jo(sv/(z + a)% + (y — b)2| ds dadb.

Using the results of the works [14], [3] and integral representation of the Bessel
function, on the transformation of the integral, write the displacements in the

forms



The dynamical problem on acting load 155

4P OOFW(S, 2) "
TGN Ag
0

N cosszy/1— 7',? sinsAy/1 — 7',3 COs YTy sin s BTy,

k=1 S5TEr /1 — T’?

4P T Fy(s,z) "

TGN Ag
0

N cossxy/1— T]? sinsA4/1 — T,? sin syTy sin s BTy

/ 2
k=1 S 17716

WA (2, y, 2 k1, ko) = —

ds, (13)

VAB(2,y, 2, k1, k) =

ds,

s,z

0
N sin sxTy sin AT cos sy, /1 — 7’13 sin s By
) d

2
k=1 S lka

UAB (2, y, 2; k1, ko) =

S

where 7, = cos (%w) — zeros of the Chebyshev polynomial of the 1st kind.

5. Results of numerical calculations. The graphs represented below
are distribution for vertical displacement on the upper face W48 (., y, h; ky, ko)
from (13) for the values of Poisson’s ratio u = % and p = % for frequencies,
using formulas (8) w = 0.3; 1; 3, p = 8.5, G =40, h = 1. Three forms of the

load distribution section along the face z = h are considered
1. B = A/2 the load is distributed across the square;

2. B = A - the load is distributed along a rectangle stretched along the Oy
axis;
3. B = A/4 - the load is distributed over a rectangle stretched along the

Oz axis.

Comparing the values of vertical displacements for different values of Poisson’s

ratio, it can be seen that the behavior of the graph is similar, but for values
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0.000 0.000
—0.002
—0.004
-0.006
—0.008
-0.010

-0.012

Flng:A/2,w:03,,U,:1/3 io. 2. w:17N:1/3

0.000
—0.002

—0.004

-0.006
—0.006
-0.008

~0.008 -0.010

—0.010 -0012

—0.014
—0.012

Fig. 3. B=A, w=0.3, u=1/3 Fig. 4. B=A, w=3, pu=1/3

0.000
0.000
-0.002

-0.002 -0.004

_0.004 -0.006

-0.008
-0.006
-0.010

—0.008 -0012

_0.010 —-0.014

-0.018

Fig. 5. B=A/4, w=103, n=1/3 Fig. 6. B=A, w=0.3, p=1/4

w1 = 1/4 the amplitude of oscillations is larger (Fig. 3, Fig. 6)). Comparing the
graphs of vertical displacements for the same frequency w = 0.3 and Poisson’s
ratio p = 1/3 under different sections of the load distribution (Fig. 1, Fig.
3, Fig. 5), it can be seen that the maximum absolute values achieved with
the shape of the section B = A, which corresponds to a rectangle elongated

along the y-axis. In the case when the load is distributed over a rectangle
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elongated along the x-axis, the displacement has a minimum amplitude and
its maximum displacement is about —0.01 units (Fig. 5). In the case when the
load is distributed over the rectangle B = A, with an increase in the vibration
frequency (Fig. 2, Fig. 3, Fig. 4), the amplitude of displacement grows.
Positive displacements are observed, which means the lifting of the face of the

elastic layer. The maximum absolute values achieved with w = 3 (Fig. 4).

CONCLUSION

The dynamical problem’s solution of the elasticity for the elastic layer was
derived, when the lower face of the layer is rigidly fixed to the foundation, the
side border is in the smooth contact, and upper face is under the influence of the
normal dynamic compressive load, applied at the initial moment of time and
distributed across a rectangular section. Application of the integral transform
method directly to the movement equations reduced the initial problem to
the one-dimensional vector problem. The last one was solved exactly using
the matrix differential calculus. The proposed approach makes it possible to
obtain an exact solution of the problem in the transform’s space.

In the future, it is possible to consider different cases of boundary conditions
and evaluate the influence of the defect inside the layer on displacements and

stresses.

Decenro I. O. Bondaperxo K. C.
JIMHAMIYHA 3AJIAYA TIPO /IO PO3IO/IIJIEHOTO HABAHTAXKEHHS HA TPYXKHUIT IIAP

Pesrome

IlobynoBano XBuIbOBE IIOJIE NPYZKHOTO IiBHIAPY, KOJIM Ha OAHIM rpani y MOYATKOBUI MO-
MEHT 4acy [i€ IUHAMidyHe HOpMaJibHe HaBaHTaKEeHHs, PO3MO/iJIeHe 3a IMPsIMOKYTHOIO TiJISTH-
Koro. Hipkua rpanuig miBIIapy >KOPCTKO 34YeIIEHa 3 OCHOBOIO, & TODEIb 3HAXOIUTHCA B
YMOBaX IVIAJKOTO KOHTAKTy. BUKOPHUCTOBYETHCS METOJ PO3BAJIy CHUCTEMH PiBHSHb pyXy Ha
cruCTeMy DIBHSIHb Ta HE3aJIeXKHO PO3B’si3yBaHe DIBHSIHHsI, Teil miaxim OyB 3ampOMOHOBAHUI
TTonosum I'. 4. BacrocoByrorhesa inTerpasbhi nepersopenns Jlammaca ta @yp’e Gesmocepe-
JIHBO JIO PIBHSAHB PYXy Ta KPANHOBUX YMOB, III0 3BOJIUTH 33/a9y JI0 BEKTOPHOI OJITHOBMMipHOL
KpaioBol 3a/1adi, IKy PO3B’sI3aHO METOJIOM MAaTPUYIHOro AudepeHIiiinoro aucaenus. Buximgni
MepeMilleHHsI OTPUMAHO 3aCTOCYBaHHSIM OOEPHEHUX iHTEerpajibHUX MMepeTBOpPEHb. Posrisny-
TO BUIQJIOK YCTAJEHNX KOJUBAHB Ta MPOAHATIZ30BAHO AMILIITYAy BEPTUKAJIBHIX ITEPEMIIIEHb,
IO BUHUKAIOTH Y MIapi B 3a/I€2KHOCTI BiZl hOpME MIJISHKY PO3IOMIIEHOTO HABAHTAYKEHHS, Ma-

Tepiajly CEpeJIOBHINA IIapy Ta 3HAaYEeHb BJIACHOI YaCTOTH KOJIMBAHb IIIapY.
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Karouosi caosa: mounuli po3s’asok, JUHAMIMHE HABGHMANCEHHA, NMPYHCHUL Wap, THMe-

2PAADHE NEPEMBOPEHHA.
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