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An incremental approach to solving the antiplane problem for bimaterial media with a thin,
physically nonlinear inclusion placed on the materials interface is discussed. Using the jump
functions method and the coupling problem of boundary values of the analytical functions
method we reduce the problem to the system of singular integral equations (SSIE) on jump
functions with variable coefficients allowing us to describe any quasi-static loads (monotonous
or not) and their influence on the stress-strain state in the bulk. To solve the SSIE problem,
an iterative analytical-numerical method is offered for various non-linear deformation models.
Numerical calculations are carried out for different values of non-linearity characteristic
parameters for the inclusion material. Their parameters are analyzed for a deformed body
under a load of a balanced concentrated force system.
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1. INTRODUCTION

Problems related to contacts have been treated with great attention in the
literature of the subject due to their practical significance. Most materials
contain numerous subtle defects in the form of cracks and inclusions of various
origin [4; 7; 10; 13; 14; 18; 20; 23|. The presence of these inhomogeneities
in engineering materials affects or disturbs their elastic field and thus greatly
influences their mechanical and physical properties. Composite materials take
advantage of inclusions as reinforcements in the matrix to have superior prop-
erties not achievable by individual constituent materials. Such subtle inhomo-
geneities can have a complex structure, taking into account possible viscosity,

plasticity, and other nonlinear effects. Considering non-linearity significantly
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complicates the process of solving the problem and requires the use of various
approximate methods even for bodies of simple geometry [1; 5; 12; 18; 19].

It has been noted in the surveys [13-15; 22; 23| that for solving the prob-
lem for elastic bodies with thin inclusions it is possible to select five main
approaches of analysis: general theoretic — to consider the inclusion of ar-
bitrary form and then to decrease one of its sizes [6; 13-15]; numerical —
to apply direct numerical methods [16]; experimental — to use experimental
methods; asymptotical — to consider the stresses and displacements directly
near the vicinity of heterogeneity and interface of materials by asymptotical
methods in detail; new theories of imperfect contact — to develop a spe-
cific theory that would enable to solve the proper problems rather simple taking
into account the effect of the small thickness of the defect [8; 9; 18; 23].

The idea of the last, one of the most productive approaches, is based on
the principle of the conjugation of continua with different dimensions [18; 23].
An object is eliminated from consideration and its influence results in the
appearance of jumps of temperature, heat fluxes, vectors of displacements and
stresses in the matrix. Then stresses and other characteristics in an arbitrary
point of solid are determined by the problem geometry, materials properties,
external loading and jump functions. The mathematical model of inclusion is
given as the interaction conditions equivalent to the conditions of imperfect
contact between the matrix surfaces adjacent to inclusion.

Attempts to consider non-linearity in the problem of antiplane deformation
of compressed semi-spaces with thin interfacial defects were made by various
authors, including the study of sliding friction of contact bodies [3; 4; 7; 9; 21].

This article aims to develop a jump functions method and construct ap-
propriate models of thin inclusions and layers whose material has essentially
non-linear properties. Assume that the body thus loads non-uniformly, includ-

ing multistage or cyclic loads.

MAIN RESULTS

1. Formulation of the problem. Consider an infinite isotropic matrix
consisting of two semi-spaces with the elastic shear constants Gy, (k = 1,2).
Here Oxyz are the Cartesian coordinates and xQOz is the plane of contact
between half-spaces.

We'll study the stress-strain state (SSS) of the bulk section by the plane
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xOy perpendicular to the direction z of its longitudinal shear. This section
creates two half-planes Sy (k = 1,2) and the interface between them corre-
sponds to the z-axis L (Fig. 1). On L along the segment L' = [—a;a] there
is a thin inclusion of thickness 2h < a, mechanical properties of which in dif-
ferent directions may differ (orthotropy) and are characterized by constitutive

equality of rather general non-linear form

O™ . .
Os = Ws (U:Ztgvagl;?;) y S= {x,y}, (1)
where the monotone function w; (Ui’;, 0?’;;) is chosen from general theoretical

considerations or is some kind of approximation of empirical data relationships.
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Figure 1: Geometry and load pattern of the problem

Suppose that external loading increase or decrease monotonically by ar-
bitrary law and consist of the uniformly distributed in infinity shear stresses
ogs = T(t), 055 = 7k(t), concentrated forces with magnitude Qp(t), screw
dislocations with Burger’s vector by(t) in points z. € Sp (kK = 1,2), t de-
notes the time as formally monotonically increasing parameter associated with
load variations (k = 1,2). It should be noted that the positive direction of
the forces and Burgers vectors is chosen along the axis z, in contrast to the
opposite direction implicitly adopted in some studies. Since we assume the
straightness of the matrix interface at infinity, we have to provide a correlation
T2(t)G1 = 11 (t)Gs.

The presence of a thin inclusion in the bulk at the interface of the ma-

terial is simulated by the jumps of stress tensor components and vectors of
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displacements on L' [18; 23]

[Uyz]h = O-gjz - 0';2 = fS(xvt)ﬂ

w = ow” Ow™ Oz Oz O-:;ci_z _ ’.
{&UL:&U_&E_[GL - 2_f6(x7t)7 SUEL,

f3(x7t) :f6($7t):07 $¢L/' (2)

Hereinafter the following notation is used: [¢], = ¢ (z, —h)—¢ (z,+h); (@), =

o (x,—h)+e (x,+h); the “+” and “—” indicators correspond to the limit values
of functions at the upper and lower faces of the line L. The contact between
the upper and lower faces of inclusion and semi-spaces along the line L’ and
between semi-spaces along the line L” = L\L’ considered to be mechanically

perfect
w™(x,+h) = wi(z, +h), ol(x,+th) = oyp(z,+h) (zel),
wi(z,—0) = wa(z,40), oy.1(x, —0) = 0yza(z,4+0) (x € L”).

In this way, we formulate the problem of longitudinal shear in the non-
bounded matrix with possible non-linear deformation of the thin interface
inclusion-layer under the action of the inhomogeneous distribution of shear
stresses, concentrated forces and screw dislocations. These forces can cause
energy dissipation, wear, etc. in the matrix with inclusion.

2. Modeling of the presence of thin interface inclusion. The mathe-
matical model of thin inclusion is presented in the form of so-called interaction
conditions [21-23], which are equivalent to the conditions of nonperfect con-
tact between the adjacent inclusion surfaces of the matrix. The basis of the
proposed method of simulation of a thin object is the principle of volumetric
integration, which consists of defining relationships describing the physical and
mechanical state of the inclusion material and then considering the smallness
of one of the linear dimensions of the inclusion. The main constitutive relations

for the arbitrary material of inclusion are the equilibrium conditions

Ao do ;Z
Tz — 4
ox * y 0 4)

and some known stress-strain dependencies (1).

Using thin-walled proportions

ow'm ow'm o w(x, h) — w™(x, —h) - [U}m]h'
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integrating (4) by = within [—a,z] and averaging in thickness y € [—h, h]

1 h

. . 1 .
in inAver in
5 | e ndy = e ) = 5 (o), (2.0) (©

we obtain the following form of inclusion balance conditions:
x

. . 1 .
o vty — o(-at) - oo [ [, (€0dE =0, (D

—a

1 h
2h )y
which, together with the relations (4), (5), fully describe the model of the thin
physically non-linear inclusion, presented in SSS inclusion values. To pass to
the values of the SSS of the matrix we must use the contact conditions (3).

Finally, from (5), (7), and dependence (4), adding (3), we obtained the math-

ematical model of a thin physically non-linear inclusion [18; 23|

[wln _
_T = (ws (O'm,o'yzat» ’

_ xz Oyz in 1 ¢

The next step is to clarify the form of relationship (1). The relationship

(8)

in 052) can be given as an analytical function that reflects a specific de-

ws(o
formation graph over the entire quasi-static load range, as well as approximate
relationships based on experimental data on the measurement of the deforma-
tion properties of specific materials. It should also be noted that dependencies
(1) for loading and unloading are predominantly (in the absence of ideal even
non-linear elasticity) in a different form [2].

Let’s consider a few partial cases of (1):

1. Let w;, (ag,aéﬁ,t) =0, s = {z,y}. This option corresponds to a com-
pletely rigid inclusion.

oyt

model of ideal hard-plastic deformation of inclusion.

2. ws (0’ ) = const, s = {x,y}. This option can be considered a

3. Many variants of the dependence form (1) are related to the assumption
that the inclusion material is orthotropically non-linear and relation (1)
can be written in a simpler form

mn in
i) G =S (o) Q
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or

- - , ow'm
in o __ vin in
o,. =G, (o2t

Yz )Ty

, < , ow'"
in __ vin in
ot =G (o, t

T2 ) 877 (10)

wmn

u2) as specified. For exam-

with variable shear modulus G (o2), Gi* (o

ple:

e Hooke’s classic linear law of elasticity

o =G ol =G (11)

Ox oy

e Bach-Shule plastic deformation model I (¢?) = K (o27)5.

e Ramberg-Osgood deformation model,

awin

Js

= A0 (14 B, (0)™), s={wy}  (12)

where the ratio (12) coincides with the deformation model vari-
ant [2] in the case of My = ms — 1, Ay = 1/Gops, Bs = K AT=71,
s = {x;y} (Gos, ms, K, are inclusion material parameters) and
when K, = 0.002 ( Gos ) S, s = {x,y} it is used to determine the

Go.or
“technical yield point” and the particular material parameter ms.

We note that model (12) can be considered as a non-linear ideal

elastic deformation option.
e Ilyushin’s model of plastic deformation

oin ) — i
sz ; .
0s (1 —w(o))

S

(o

e Classic linear elastic-plastic deformation models without hardening

in in
ow ol

Os = Go ) ‘0—?;‘ < Tyieldy S = {x7y}a
ow™ T izld ; (14)
=2 s ‘U?;} > Tyield

Os Gos

and with hardening

8wz’n O.z'n .
=== |0_,’;TZL‘ < Tyieldv s = {xvy}v

0s G()s’
GOS - Gls

awin
O0s GOsGls ’

| (15)

= (U;Z - Tyield) ‘0'52‘ > Tyield-
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e Models of plastic deformation

ing _iny) 1 kglsg
((‘\Ss (082)) = : 2;
1+ (e/m) (16)
in/ _iny)—1 GST’Sgi’eld
(Ss (Usz)) = Tyield + m-

e Each deformation model is given by a function like the experimen-

tally obtained dependence 3% (o7, ¢) for a given material [2].

For any of the above-mentioned deformation models of the form (9), con-
sidering (10) and (3), the mathematical model of physically orthotropically

non-linear thin inclusion will take the following form

o ow , 1 [*
G2l (5o ) w02~ ¢ [ [o], €0 =0, -

G;”(a;’;,t) [w]p(z,t) + h <0y2>h (x,t),=0.

Of course, the model (17) can be further complicated by considering the more
complicated dependence (1), the nonperfect contact between the matrix and
inclusion [8; 11; 19], the thermal load, etc. However, these complications will
not be of fundamental importance for the general methodology of solving the
problem.

3. The problem solution. Using the method [18; 23] to solve the
problem, we can obtain dependences of stress tensor components and vector

displacement derivatives on the line L of the unbounded plane at the load stage

O-yiz(x7t) = :Fpka(‘rat) - CgG(xvt) + ngi(xat)7

axiz(x, t) = FCfe(x,t) + prys(z,t) + Ugf(x, t),
1 fo(z,t)dx 1

t = — _— = ——

QT(Z, ) ™) T —Z ’ G1+G2’

Oyz(2,t) +i0,.(2,t) = ng(z, t) + iagz(z, t) +iprgs(z,t) — Cgg(z,t)

pr = G, C = G3_px,

(z€ 8k r=3,6; k=1,2).
(18)

” — k = 1. The upper index “0” means

Superscript “4” refers to k = 2; “—

the corresponding values in the solid body without heterogeneity under the
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same external loading (homogeneous solution). The following entries [21] shall

continue to apply:
0'22(2, t) + iagz(zv t) = T(t) +1 {Tk(t) + Dk(za t)+
+ (pr — pj)bk(z,t) + 2kaj(Z,t)} ,

 Qx(t) +iGrby(?)
27 (2 — zuk)

(19)

Dk(z,t): (ZESk,]le,Q;jZS—k),

Using (18), (19) and boundary conditions (3) the problem reduces (17) to

a system of singular integral equations (SSIE)

(p2 — p1) fo(z,t) + 2pgs(z,t) — W - f3(&,t)dE = F3 (m,Gi”(a;Z),t) )

Gzn n x ) )
(pQ —pl)f3($7t) + 2096(1"0 - yELO-yZ) B f6(£7t)d£ = FG (IL‘, ng/n(o_;r;),t) ;
Py (2, G2 (02).8) = G0t (=) = (oha(w.0)/ G+ oy (.0)/Ga)
(20)
o . 0 o(x,t 01 (z,t
s (. G103, 1) = (o) (2,1) — G0 ("(]5 )y Tt )) -
Gyl g
_ % [w ] (_a)

with additional power balance conditions and the uniqueness of the displace-

ments when traversing a thin defect

f3(&,1)d€ = 2h (0% (a) — o3 (—a)) fs(&,)d§ = [w](a) — [w](—a).
(21)

The method [21; 23| can be used to solve SSIE (20), (21) because the

characteristic part of SSIE does not depend on non-linear coefficients [17].

—a

In general, local jump of displacement and energy dissipation are defined

by expressions
[w](z,t) = [ fe(§,t)ds, ze L (22)

Wi(t) = / oy, ) )z, D) (23)
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In partial cases of crack (G2, G;" — 0) or rigid inclusion (G, G;” — 00),
SSIE (20) has analytical solutions that correspond to known results [21; 23].
In case when the materials of the semi-spaces are identical (G = G2 = G)
SSIE (20) is simplified to two independent SIE:

1 1 .
593(36715) WG (o 1) | f3(§ t)dé = Fs (2, G (02, 1),1)

G’Ln( 1227) . (24)
Gyg(w,t) — Tyw 3 fo(&,1)dE = Fg (z, Gy (o4, 1), 1) ;

A more detailed analysis of the solution of the problem will be carried out
for the partial case (24) equality of elastic characteristics of semi-spaces. As
a result of the above-mentioned method [21; 23|, we use the decomposition of

jump functions into a series of Chebyshev polynomials

£ (5) = _xQZB’" i (5). r=30), (25)

Using known integrals, we obtain

n

_z fr (&, )dg = < + arcsin a) aBg(t) — Va? —@’QZJBT( )Uj-1 (2) :

Jj=1

n a
x x
o (t) =X B0V (Z). [ e nde =i (20)
]:
Next, after transforming (24) into a dimensionless form, using (25)—(26) in
the set of points z,, = cos ;7% (m = 1,n) generates two independent linear
algebraic equations (SLAE) of orders n + 1 for unknown items B} (r = 3, 6;

j=0,n)

57y (s Gi) B = F (G2
j=0

(27)
Bg = 2}~l (U;Z(a) - U;Z(—a)) /G(JL’U?
jz_%x?nj (xm Gy%) By = <xm Gﬁ””) " m=T,n (28)

BY = (] (a) — [@) (—a).
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where the notations are used

_ m Hjm ~
Xim = —503'@7 +(1- 5Oj) <C~;m + 2]9) Pim,
xrm xrm

X?m = _50jéjﬂn7m +(1— 50]') <é$n:ujm + 26’) Pjm,

V1—122, _7~T<1_ m

Mjm:T, Tm 3 nt1

G, = G am), s={x,y},

F=w/a, h=hla, §=yla, GP=GV/[CGu, Gy =Gy'[Ga,
f3=Gafs, fo=1Ffe, F3=F/Gaw, Fo=F5/Gav, D= Garp
€ =C/Gay,  Gav = {V/C1Ga,max (G1, Ga) .7, Tyicta, @/ ma

> v pim = Uj—1(zm),

dp; is Kronecker symbol.

Dependence G (o, t), Gi*(oh,t) on the current SSS causes serious cal-
culation difficulties due to its variability along L. Therefore, to take this effect
into account, we can propose the following iterative strategy for solving the
problem.

Let’s mark (G2, (o (zm), t))k, s = {z,y} is a dependent shear module at

collocation points z,, (m = 1,n) for the appropriate number of approximations
k. At the initial moment (zero approximation), the values (G?ﬁn)o (0,0) are
selected as equal to the initial point of the loading process G, % (according
to the deformation diagram) in the absence of a residual SSS. These values are

the same at all points of the collocation x,, (m = 1,n).

1. The external loading of the body starts with a relatively small value of the
parameter 7 or () for the selected loading scheme (the first loading step in
time ¢y is completed). Then we solve the SLAE (27)-(28). The obtained

k .
values (BJT) (r = 3,6; 7 = 0,n) are replaced into the relations (25) -
(26), and then in (18), calculating the stresses and deformations in each

of the collocation points

O’;Z,(:f,t) = <0‘22(i‘,t)> /Gav — (P2 _pl)fS(jat) - 20&6(*%707
| | . ) (29)
o7 (i) = 207 (—a) /Gt / Fale )/
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<‘Z:> (Z,1) = <2’?}:> (%,t) + (p2 — 1) fo (&, t) + 25G3(%, 1),

—a T O'OZ ~
<ZZ> (.1) = Wh> _ i/ fo(&,t)de + <(§’k> (@,1).

2. Next, we check that dependence (10) is performed at each collocation
point with the specified accuracy, i.e. that the value of the module
G (o) corresponds to the stress 02%(z,,) or deformation %—’;’m(ajm)
level obtained by the given deformation graph. If the specified accuracy
meets the requirements, we determine the current values of the modules
G (ot t), Gin (o, t) for each collocation point and proceed to the

next loading step (on item 1). If not, we repeat the calculation by re-
placing in SLAE (27)-(28) the module values G, ((z,, (G,)*1))
at each collocation point obtained at the previous approximation, thus
minimizing the deviation of the calculated module from that specified
in (10). The process is convergent. Once sufficient accuracy has been
reached, we return to item 1, continuing with the loading. The values ob-
tained in the first (initial) step of the SSS matrix will affect the residuals

in the second step (loading or unloading).

Using (5), (18), (25), (26) the expression of energy dissipation at the load

stage take a discrete dimensionless form

W(t) = / 0y, 8)[w] (2, ) i = 0.5AGapa?W(H),
.

Wht) =053 (6. (xm, 1)) [@] (2m). (30)
m=1

4. Numerical analysis and discussion. Numerical analysis of the
solution of the problem is made for a partial case of an equality of elastic
characteristics of half-spaces (G1 = G2 = G) under a gradual alternating load
with concentrated forces Q = Q/aG gy (Qa=—Q1=Q, 29 = —3, = id) in
the global load as a result of the change Q: [0 <+ 10.0].

Fig. 3 shows a comparison of the results using the elastic-plastic defor-
mation law (14)—(15) (dashed line, Fig. 2) and Hooke’s deformation law (13)
(solid line, Fig. 2).

According to the acute change like deformation in the plastic inclusion

area (Fig. 3), the change in energy dissipation rate depends on the difference
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Figure 2: The elastic-plastic deformations law (14)—(15) uniaxial stress-strain

diagram for inclusion material

between the diagrams (14)-(15) of the modules Gy, G1, (Fig. 4) and is much
more pronounced when the points of force application are closer to the inclusion

axis.

Figure 3: Distribution of elastic-plastic deformations (dash, dot-dash) of the
inclusion during loading in comparison with linear elastic (Hooke’s law, solid

line) deformations
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Figure 4: Dependence of change in energy dissipation rate on the difference
between the modules in the Gp,, G, range (14)-(15) and a distance d of the

forces application points from the inclusion axis

2. CONCLUSION

A method of modeling of the thin inclusion with any non-linear physical-
mechanical properties of the general form has been developed. This allowed
solving the problem of a longitudinal shear of the matrix containing such a thin
inclusion-layer at the component’s boundary. SLAE with variable coefficients-
functions is constructed by the methods of coupling the limit values of analyt-
ical functions and jump functions. This makes it possible to describe any way
of changing the quasi-static load (monotonous or not) and its effect on the SSS
in the body with inhomogeneity based on an incremental approach. For the
numerical solution of the system, a convergent iterative analytical-numerical
method has been proposed. Calculation formulas for deformations, SSIF, and
energy dissipation are constructed. Numerical analysis of the inclusion mate-
rial is subject to the linear law of elastic-plastic deformation. It has been found
that the rate of energy dissipation increased significantly when plastic defor-
mations started under load and are much more pronounced when the points

of force application are closer to the inclusion axis.
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Ilickosy6 H. 3., Cyaum I T.
MOJEIOBAHHS JE®OPMAILIT BIMATEPIAJIY 3 TOHKUM MEXAHIYHO HEJIHIMHUM MIXKDA-
3HUM BKJIIOUEHHSIM

Pesrome

OBroBOPIOETHCs IHKPEMEHTAIBLHUN /X 10 BUPIIIEHHs] aHTUILIOCKOT 3aa4i yist 6imarepi-
aJIbHOI'O CEPEJIOBUINA 3 TOHKUM, (DI3MYHO HEJIHIMHUM MiKba3HUM BKJIIOYEHHSIM. BuKopwu-
CTOBYIOYHN MeToJu (PYHKIHN cTpubKa Ta 3aJadi CIOpsiKEeHHsI TPAHUYIHUX 3HAYEHb aHAJITH-
qanx YHKIIH 3BOAUMO 33J7ady 10 CHCTEMHU CUHTYJIApHUX iHTerpanbHux pisasab (CCIP)
3i aMiHHUME KoedimieHTaMu, MO TO3BOJISIOTH OMUCYBATH Oy/Ib-siKi KBa3iCTaTHYHI HABAHTa-
KeHHsl (MOHOTOHHI 1 HEMOHOTOHHI), a TaKOXK IX BIUIMB HA HAIPYXKEHO-1ePOPMOBAHUN CTAH
cepenosuma. st upimenass CCIP npomnoHyeTbcsi iTepaTUBHUN aHAJIITUKO-UUCTOBUNA Me-
TOZ, YISl PI3HUX MOJiesieil HetHiftHoro gedopMmyBanHs. BUKOHYIOTBCS YHCEJIbHI pO3paXyHKH
JJId PI3HUX 3HAYEHb IapaMeTPiB HEJIHIHHOCTI, 10 XapaKTePU3yIOTh MaTepiajl BKJIIOYECHHS.
Ix mapamerpu AHATI3YIOThCA MJIs Tifa, 1Mo 1edOPMYEThCA i/l HABAHTAXKEHHSIM 30aJIaHCO-
BAHOI CUCTEMU 30CEPEJPKEHNX 3YCHJIb. 3IHCHEHO YHCJIOBI PO3PAXyHKHM [IJIsl PI3HMX 3HAYEHD
mapaMeTpiB HEJIHIHHOCTI MEXaHIYHUX XapaKTEepPUCTUK MaTepiaty BKJodYeHHd. Jlocitimkeno
IX BILIMB Ha HAIPYKeHO-IeOPMOBAHUI CTaH MATPHUIl HABAHTAaXKEHOT 30aJIAaHCOBAHOIO CHCTe-
MO0 30CEPEIZKEHUX CHIIL.

Ka10%06i cao6a: HeAiniting npysitcHicmb, morke 8KA0UEHHA, PO3CII08aNNHA enepeil, Koediyi-
EHM THMEHCUBHOCTNE HANPYHCEHD, GHMUNAOCKOT dedpopmanis, no3dosxcHiti 3cys, bimamepi-

an, Pyrkyii cmpubxra.

Iucxosy6 H. 3., Cyaum I T.
MOJIEJIMPOBAHUE [JE®OPMAIIMM BUMATEPUAJIA C TOHKMM MEXAHWYECKU HEJIMHE-
HBIM ME>K®A3HBIM BKJIIOYEHUEM

Pesrome

O6cy»KaeTcst NHKPEMEHTAJIbHBIN 110/1X0/, K PEIIeHNI0 aHTUILIOCKON 3ajadm Jjist bumare-
pUAaIBbHON Cpesbl ¢ TOHKUM, (pU3MYEeCKN HEJTUHEHHBIM Me:K(Ma3HbIM BKIIOUeHHEM. Vcrmosn-
3y MeTonbl (DPYHKIUI CKadKa W 3aJa9d COMPSXKEHUS IPDAHUYHBIX 3HAYECHWI aHAJTUTHYIE-
CKUX (YHKIWI, MBI CBOJMM 3a7@dy K CHCTEME€ CHHTYJISIDHBIX WHTErPAJbHBIX yPABHEHU
(CCHMY) ¢ nepemenubiMu Ko3bbUIMEHTAMHE, TO3BOJISIIONIMMHA ONUCHIBATD JII00bIE KBA3UCTA~
TUYEeCKHEe HArpy3Ku (MOHOTOHHBIE U HEMOHOTOHHBIE), & TAKKe MX BJIUSHUE HA HAIIPSKEHHO-
nedopmuposanHoe cocrosiuue cpenbl. st pemmenus CCUY mnpejjaraeTcss UTepaTUBHBIM
AHAJIMTUKO-YUCIIOBON METOJI JIJIsT PA3/IMIHBIX MOJIEJel HeTMHEWHOTO aedopMupoBanusi. Bei-
TIOJTHSIFOTCS INCJIEHHBIE PACYIETHI JJIsT PA3JIMIHBIX 3HAUEHNN TapaMeTPOB HEJIMHEITHOCTH, Xa-
PaKTepU3YIOMNX MaTepHaJ BKJOYeHHs. VX mapaMerpbl aHAIU3UPYIOTCA I JedOpPMUDY-
€MOr0 Tejla IO/ HArPy3KOil cOAJIaHCUPOBAHHOIN CHCTEMBI COCpeIOTOYeHHBIX ycuimit. Ocy-
IIECTBJIEHO YKCJIOBbIE PACYETHI /IS PA3/IUIHBIX 3HAUEHUI MapaMeTPOB HEJTMHEHHOCTHU YIIPY-
IUX XapaKTEePUCTUK MaTepuajia BKJOYeHus. VIcciemoBaHO WX BINWSHEE Ha HAIPSKEHHO-
nedopMupOBaHHOE COCTOSIHME MATPHUIIBI HATPY?KaeMOil cOAJIaHCUPOBAHHOM CUCTEMOI cocpe-

JO0TOYE€HHbIX CHJI.
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Karouesvie crosa: neauretinas ynpyzocmdv, MOHKOE BKANOUEHUE, DPACCEAHUE IHEP2UU, KOB&-

Puyuenm uHMEHCUBHOCTNU HANPANCEHUT, aAHRMUNAOCKAA dehopmarus, NPodosvHbil cosue,

bumamepuan, GynryuL cravKa.
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