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GENERATOR OF PRN’S ON THE NORM GROUP

Let p be a prime number, d € IN, (_Td) = —1, m > 2, and let E,, denotes the set of of residue

classes modulo p™ over the ring of Gaussian integers in imaginary quadratic field Q(v/—d)
with norms which are congruented with 1 modulo p™. In present paper we establish the
polynomial representations for real and imagimary parts of the powers of generating element
u+ivV/d of the cyclic group E,,. These representations permit to deduce the “rooted bounds”
for the exponential sum in Turan-Erdés-Koksma inequality. The new family of the sequences
of pseudo-random numbers that passes the serial test on pseudorandomness was being buit.
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1. INTRODUCTION

The sequence of real numbers {a,}, 0 < a, < 1 we call the sequence of
pseudorandom numbers (abbreviation, PRN’s) if it is produced by determin-
istic generator and, being a periodical sequence, has the statistical properties
such that it looks like to implementation of the sequence of random num-
bers with independent and uniformly distributed values on [0,1). Primary
sequences of PRN’s are the sequences of PRN’s which generated by the con-

gruential recursion of the type

Yn+1 = f(ynv Yn—1,--- 7yn—k+1) (mOd m)

with some initial values yo, y1,...,yx—1 € {0,1,...,m—1}, where f(ui,...,ux)
is integer-valued function over an. Such sequences have been studied with
many results (see, survey [12]).

Because it emerged that linear function f(u) = au + b does not supply
requirements of “affinity” to statistical independent (unpredictable) sequence
(see, [10]), this motivated the creation of nonlinear congruential pseudorandom

sequences having an unpredictability property.
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The generator produced by the quadratic function f(u) = au?® + bu + c
satisfies to condition of “practical” unpredictability (see, [6]).

The generator associated with quadratic function f(c) we call parabolical.

In 1989 J. Eichenauer and J. Lehn[4] and H. Niederreiter|[13| have studied

the sequences generated by the congruential relation modulo p

ar, ' +b if x, #0,
Tnt1 = .
b if x,=0.

with some coefficients a € Iy, b € IF,.

In the paper [18] there are investigated the analogous of inversive congru-
ential generators, that without any increases of computational complexity of
finding the elements of sequence {y,}, have got an essential complexity for
intruder’s to work around the parameters of inversive or linear generator to be
recovered.

The requirements to uniform distribution and unpredictability is satisfied

the following inversive generator
Yor1 Zaysl b (mod pm),

where p is a prime number, a,b € Z, y, ! is a multiplicative inverse to y,
(mod p™).

The inversive generator and its generalization was being investigated by
many authors (see, [1], [2], [3], [5], [6], [7], [8], [11], [15], [16], [17], [18]).

Starting out from our reasoning, we will call such inversive generator as
hyperbolical.

In [19] there have been studied the statistical properties of sequences of
PRN’s produced by a number generator, which determines by the norm group
of the ring of residue classes of modulus p™ of the ring of Gaussian integers.
That generator we call circular generator.

In present paper we consider the generalization of generator from [19] and
study the statistical properties of the sequences of PRN’s produced by this
generator.

Our main aim here is to elucidate the motivation for constructing circular
generator of the sequences of PRN’s with some specific properties that be
faster of its usage in cryptography. Our exposition focuses on some special

measures of "randomness" with respect to which "the good" sequences have
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been produced by using of norm group F,,. A quantive measure of uniformity
of distribution of a sequence may be the so-called discrepancy. Originated
from a classical problem in Diophantine approximations this concept has found
applications in the analysis of PR sequences on uniformity and unpredictability.
From the well-known Turan-Erdés-Koksma inequality it is evident that the
main tool in estimating discrepancy is the use of bounds on exponential sums
over on elements of the sequence of PRN’s. This motivates a construction this
paper.

Before we proceed further we will fix the notation that will be used through-

out this paper.

NOTATION.

e Lower case Roman (respectively, Greek) letters usually denote rational
(respectively, nonrational) integers of field Q (respectively, field Q(v/—d),
d is a free-square natural number); in particular, m, n, k are positive

integers and p is a rational prime number.

e We also define a norm over Q(v/—d) into Q by N(a) = a? + db? for
a=a+bv—d, a,be Q.

e For the sake of convenience, we suppose d = 1 (mod 4) and denote by G
the set of integer elements of Q(v/—d).

e Let Z, (or G) denotes the ring of residue classes modulo ¢, and Z; (or

G) denotes the multiplicative group in Zg (or G).

o Ifx € Gy, we write 2~ ! for the multiplicative inverse of z mod ¢, i.e. x
is an arbitrary integer of Q(v/—d) satisfying the condition z - 27! = 1
(mod q).

e For a € Z the symbol (%) denotes a symbol of Legendre.

e As usual, (a,b) stand for the greater common divisor of integer rational

a and b (or, respectively, a and § in G).
e Through Z[z] (or G[z]) we denote the polynomial ring over Z (or G).

e For a € Z (a € G) stand v,(a) (or vp(a)) if p*@]a and p* @+ fa.
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e The fraction ¢, (b,q) = 1, of modulus ¢ means as ab™!, where b~! is a

multiplicative inverse modulo q.

o At last, eq(z) denotes ™.

2. AUXILIARY ARGUMENTS

We start by listing some previous estimates of exponential sums which will
be used to establish our main results.
Let f(x) be a periodic function with a period 7. Forany N € N, 1 < N < 7,

we denote
N
f) _ Z e27rif(a:)
r=1

Lemma 1. The following estimate

Z 627rz flz)+

SN (f)| < max logT

1<n<Tt

holds.

This statement is well-known lemma about an estimate of uncomplete ex-

ponential sum by means of the complete exponential sum (see, [9]).

Lemma 2. Let p be a prime number and let f(x) be a polynomial over Z.
f(x) = Ayz + Agz® + p(Asa® + - ),

and, moreover, let vy(A2) = o > 0, vp(A4;) > o, j = 3,4,.... Then we have

the following estimate

Z 627‘1% _ { meJ"a ifVP(AI) > «,
0

CEGme else’

(see, [16]).

The relevant statistical properties of any sequence of the independent and
uniformly distributed random numbers are, first of all, uniformity and depen-
dence. Departures from uniformity or independency may be detected by theo-
retical or empirical tests. The main tools of theoretical tests for the establish-

ment of the uniformity or dependency of the sequence {x,} is the s-dimensional
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(s)

discrepancy of the points X»’ = (n, Tnt1s-- s Tnts—1), S = 1,2,..., which
defined by
s s s An(A
D (X(())7 ( )77X](\f),1) = Ssup M—’UOZ(A) y
acpons | N

where Ay (A) is the number of points x falling into A C [0,1)%, vol(A) is a
volume of A, and the supremum is extended over all subintervals A of [0, 1)".

If DN(X(SS), X§S), e ,X](\‘;)_l) — 0 for N — oo we say that the sequence of
PRN’s {z,,} passes the s-dimensional test on the pseudo-randomness.

The following two lemmas give the estimate for Dy (X(gs), X{S), . ,Xj(\f)_l).

Lemma 3. Let T > N > 1 and q > 2 be integers, yx € {0,1,...,q— 1}* for
kzO,l,...,N—l;tk:%‘E [0,1)%. Then

s 1 1
Dy(tg,t1,...,tno1) < — (h Dl hn T
N( 0, %1, s LN 1) — q + N Z Z T(h,q)r(h(hT)

(see, [12])

Lemma 4. The discrepancy of N arbitrary points to,t1,...tn_1 € [0,1)?

satisfies

N-1

Dn(to,t1, ... tn_1) > e(h -t
~(to, t1 N-1) 2(r + 2)|h1ha| N kzzo (h- )

for any lattice point h = (hy, ha) € Z? with hihy # 0.

(It is the special version of Niederreiter result in [13]).

For integers s > 1 and ¢ > 2, let Cs(q) be the set of all nonzero lattice
points h = (hy,...,hs) € Z° with =2 < h; <  for 1 < j < 5. Define for
h € Cs(q)

R if h=0,
r(h,Q)—{ gsin (r ||) if h 0,
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Lemma 5. Let {Y,} be the sequence of s-dimensional points in (N U {0})*
with a period T, and y,, = % € [0,1)%. Then for any N, 1 < N <7, we have

© Z5 -
DN (yo,y1:---,¥N-1) =7 Z Z o r(,q)r(ho, q)

)

N-1 nh
h -y, + 2
X nEZOG( Yo+ —)

where h -y denotes the inner product of h and y.

Lemma 6. Let Xo, X1,...,Xny_1 € [0,1)°, s > 1 with discrepancy D3;. Then

for any nonzero h = (hi,...,hs) € Z* we have
N-1 m
7 2 T+ 1
E : 2mih-Xp
n:Oem Sﬂ-<( 5 ) 2m>ND jl_IlmaX 12“1 D

where m is the number of nonzero coordinates of h.

(see, [13])
Let p be a prime rational number, (%) = —1. Let us denote by E,, the
following subgroup of Gm

Ep:={recGpm: N(x)=+£1 (modp™)}.

The subgroup Ej, we call the norm group in G;m of imaginary quadratic

field Q(v/—d).
The following lemma is constitutive for the sequence {z,} being investi-

gated in our paper.

Lemma 7. The norm group E,, is a cyclic group of order 2(p + 1)p™ 1. Let

u+1v denotes a generating element of Ey,. Then exist xo,yo € Zym such that
(u+ V=dv)*"*D = 1+ p*wo + V—=dpyo,
2x0 + dyt = —2p*z2  (mod p*)

and for any t = 4,5,... we have modulo p™

((u—l—FU) p+1) A0+A1t+A2t2—|—
S((u+ vV—=dv)?PH = Vd - (By + Bit + Bot? + - --).
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Moreover,
Ap=1 (mod p*), By=0 (mod p?),
Ay = pPag + %dpzyg = —gxop (mod p°),
Bi = pyo(1 — p°xo)  (mod p?),
Ay = —g:c%pz (mod p5),
By = gp%oyo (mod p*),
Ai=B;=0 (mod p®), j =3.4,....

Proof. By virtue of the fact that the residue classes modulo p with

<_7fi) = —1 generate a prime field G), it follows that the multiplicative group

of this field is a cyclic group G, and we always can yield a generating element

of every group Ej;, of a reduced residue system modulo p*, k =1,2,..., in G.
Denote
(u+V—dv)* = u(k) +vV—dv(k), 0 <k <2p+1,
m—1
(u + V—dv) 2Ptk = Z ( )+ V—dBj( )> (mod p™).
7=0

It is clear, that
Aj(k) = Aju(k) — dBj’U(k‘); Bj(k) = Aj’l)(k) + B]u(k)

And now, the description of group FE,, is performed by an analogue of descrip-
tion of the norm group E,, in case of Gaussian field Q(i) E,, (in greater details
see [14]).

Thus from Lemma (7) we infer.

Consequence 1. For k=0,1,...,2p+ 1, we have

(u(k),p) = (0(k),p) = 1if k#0 (mod 20

u(0) =1, v(0) =0, (u(p+1),p) =1, pllv(p+1);

u(k) =0 (mod p), (v(k),p)=1if k= p—;—l or 3(p2+ 1);
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Hence, for k # 0 (mod %) we have

Ao(k) = u(k), Bo(k)=v(k) (mod p),

Ai(k) = —pdyov(k), Bi(k) = pyou(k) (mod p*),
Ax(k) = ~adpPu(k), Ba(k) = —adpPo(k) (mod pt),
A;(0) = Aj, B;j(0)=Bj, j=3.4,...,

Ag(p+1)=—1, Bo(p+1)=0 (mod p?),

P?|Ai(p + 1), p||Bi(p + 1), p*||A2(p + 1),
pllAi(k), p*||Bi(k), p*||A2(k), Bo(p+1)=0 (mod p?),

p+1 3(p+1)
or 2 .

By(k) =0 (mod p?) if k= 5

Lastly, we will make use the following sequences produced by a generating

element u 4+ iv of the norm group E,,.

We select a random number & € {0,1,...,2p+1} and consider the sequence
{(u+/—=dv)2etntk) ' — 0. 1,...,pm 1 — 1.
Denote
o)) 1= R((u + V=dv)?PrInE), (1)
Y = (V=0 ), 2

m—1

Every sequence {a:n } or {yn )} n = 0,1,..., has a period 7 = p
From Lemma 7 and its corollary we obtain the description of elements of these

sequences as the polynomials at n. Besides, taking into account, that

(u + v/ —dv)? () = 44 + vV —doy,
up = 1+ p*x0, vo = pyo, (70,p) = (yo,p) =1

and
2® =20 ug — 4 vp  (mod p™), (3)
y® =2 vo — ™ ug  (mod p™) (4)

we may be achieved the representations of :cﬁf), yq(zk) as the polynomials at z,

Yo-
By virtue of the congruence (mgﬂ)) + d( (k )> = (-1)* (mod p™) and

recursion (3) we call the sequences (1) and (2) as the sequences of PRN’s
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produced by the norm group. The recursions (3), (4) we call the generators

associated with the norm group E,,.

FAMILY OF SEQUENCES OF PRIN’S PRODUCED BY CIRCULAR GEN-
ERATOR It is clear to see that, without restricting the generality, we can take
that d =1 and, hence, p = 3 (mod 4).

So, finally, we generate the family of the sequences of congruential PRN’s
which associated with the sequences {x,(k)} and {y,(k)}. Depending on a
select k € {0,1,...,2p+ 1} we will construct the special sequences of PRN’s.

We will distinguish three cases of class sequences depend upon the values of k:
(A) k #0 (mod Z3h);
(B) k=0orp+1;

(C) k:%or%.

Firstly, we consider the class (A). The classes (B) and (C') may be consider
by a similar way, but these classes have its specific.

So, for every k € {0,1,...,2p+ 1}, kK # 0 (mod %) we consider the
sequences {:c%k) (t)} and {yflk) (t)},t=0,1,2,.... For such k we have

k20 <modp;1>.

In these cases (u(k),p) = (v(k),p) = 1.

We denote
25
zﬁlk) = ﬁ (mod p™), (5)
1+ UO(k)yn
where vo(k) = v(k) + p?v1(k), (v1(k),p) = 1.
This definition is correct by virtue of the fact that
1+ v0(k)y =14 vo(k)Bo(k) = 1+ dvd(k) = —u2(k) (mod p),

m—1 .
vo(k) Y Bj(k)n =0 (mod p).
j=1
And hence, denoting (u(k)™1)? = u(k)~2 (mod p™), we have modulo p™

20 = —(u(k)) 2 (Ao (k) + Ar(k)n+ ) (1 + (u(k)) 200 () By (k)n

+u2(k) (vo(k)Ba(k)n? + u=2(k)vd (k) B1(k)) n® + - -- ) _



Generator of PRN’s on the norm group 35

Now, after simple calculations, we get

M
A = —(u(k) 2y AP,
j=0

where
Agk) = pu(k) " yo — pyov(k)u(k) =2,
A = vo(k) Ao (k) Ba(k) + (k) "vo (k)2 Ao (k) B (k)
+ vo(k) A1 (k) Bi(k) + Aa(k),
Ag.k) =0 (modp?), j=3,4,....

So, we obtain modulo p™
2 = F(n) = (u(k) ™" |45 + pyovi (k) + pea(k)n® + p°G(m)] , (6)
where

co(k) = y2 - (—2xou~ (k)v?(k) — 10z2u® (k) — 1023u™ (k)v(k) — u=3(k)v?(k)),
(7)
where G(n) € Zyn[n].
The relation (6) defines the representation of z,(lk) as the polynomial at n.
In case of (B) we consider the sequence {zfzk)}, 2P = %
Finally, in case of (C) we let "

k
b

- (k)

2(F) =
1+yn

n

(k)

and similarly to (A) we infer the representation zp ’ as polynomial at n.

This allows us to state the following theorem.

Theorem 1. Let hi,ho,j € Z, (hy, he,p™) = p'. Then for the sequence of
PRN'’s {27(1]{)} the following estimate

pm—l_l
m+~£
‘Sj(hl,hg)‘ = Z epm(hlzék) + hZZSL?j) < pT+
n=0

holds for every j € {1,...,2p+ 1}.
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Proof. Without less of generality that (hy, ha, p™) = 1, using the relations
(6) we can write for k£ Z 0 (mod %)

hlzgk) + thng =

= (u(k)) 2| A + p2((hav(k) + hav(k)(1 + pO(5)))yov (k) + 2-haca(k) (1 + pO(§)))n
+p2(hiea(k) + haca(k)(1 4+ pO(4)))n? + pPGi(n) | (mod p™),

where ¢y defined in (7)

By the condition (hq, ha,p™) = 1, it follows that the congruences
(h1v(k) 4 hav(k)(1 + pO(7)))yov(k) + 2-haca(k)(1 + pO(j)) =0  (mod p)
hica(k) + haca(k)(1 4+ pO(j)) =0

cannot be realized simultaneously. Thus, by Lemma 2, we infer

(mod p)

0 if hi+he=0 (mod p),

m (8)
p2 if hi+hy#0 (mod p).

1S (ha, ha) S{

(s)
Consequence 2. The discrepancy of the sequence {1%}’ s =1,2, has the

following bound

m—1
2 2 7\°
Dy < pnf_l + pN2 (ﬂlogpm + 5) , 0< N <, 9)

where XV(LS) = <z,(1k), .. ,zr(bljzs_l).

This assertion follows from Lemma 4 and Theorem 1. Now we prove a

lower estimate DJ(\?) .

Theorem 2. Let p be a prime number, p =3 (mod 4) and let z,(Lk) defined by
(k)
the relation (5), k # 0 (mod 2%1) Then for the sequence {wfzk)}, wik) =

p’"L )
n=0,1,...,7 — 1, we have
1 m—1
pDOw® k) gk ey TR 1
T (WO 7Wl ? 7WT—1) - 4<7T+2)p 2 Y ( 0)
where WT(Lk) = (wgﬁ),wfﬁl), n=0,1,...,7—1.

Proof. We take h; = ho = 1. Then by Theorem 1 with j = 1 and Lemma

7, we at one obtain
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(For detailed proof, see [16]).
Theorem 1 and 2 show that, in general, the upper bound is the best possible
(k) , (k) )}

up to the logarithmic factor for circular congruential sequence {(wr,’, w,, 11
n > 0, defined by congruence (5) (or (10)).

3. CONCLUSION

In conclusion we have the following two remarks.

Remark 1. [t is straightforward to verify that all that we said in the case the
sequence produced of the relation (5) also holds for the sequence produced by

the congruence

zg"’) = uo(k)a:;k) + vg(k)y(k) (mod p™) (11)

n

with ug(k) = u(k)+p*u(k), vo(k) = v(k)+p*vi(k), (u1(k),p) = (v1(k),p) = 1.

Remark 2. Relations (3), (4) make it possible to drive the representations
(k) (k) (k)

Tn', Yn ' and consequently zy ' as polynomials at xg, yo. Thus it may be well
to construct non-trivial estimates of exponential sums over generating element

of the norm group E,,.

Qyeeno I1., Bapbareun C.
I'EHEPATOP IIBY HA HOPMEHII I'PVYIII

Pesrome

Hexait p — npocre uncio, d € IN, (_Td) = —1, m > 2, i Hexait I;, no3HaUa€ MHOXKUHY KJIaCiB
JIMIIKIB 32 MOJLyJieM P HaJl KIJIbIEM [LJINX TayCOBUX YUCEJI B YSIBHOMY KBaJPATUUYHOMY TIOJI1
Q(\/jd) 3 HOpMaMH, IO JAOpiBHIOITEL 1 3a MomysieM p™. B nawiii ctarti Mu oTpuMyemMo 1o-
JIiHOMIiaJIbHI 300parkeHHs IS JiCHOI Ta YsIBHOI YaCTUH CTEIEHIB MOPOJIXKYIOYOIro eJIEMEHTY
u + ivv/d uukmniusoi rpynu Ep,. 1 306pakeHHst [03BOJISIOTh OTPUMATH “KOpeHeBi rpaHni’
eKcroHeHninol cymu B HepiBHocti Typana-Epnpoma-Kokemu. Takoxk 6ys1o mo0yjoBaHo HO-
Be CiMeMCTBO IOCTIITOBHOCTEH IICEBAOBUIIAIKOBAX JHCEJI, IO IPOXOAATE CepiajbHUI TECT Ha
ICEBIOBUNAIKOBICTD.

Karowosi caosa: yasre keadpamuime noie, HOPMEHRHA 2pyna, ncesdosunadkosi wucaa, 0eckpi-

NAHCLA.

Qyeeno 11., Bapbarey C.
I'EHEPATOP IICY HA HOPMEHOI! I'PVIIIE

Pesrome
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IIyctes p — mpocroe uucio, d € NN, (%) = —1, m > 2, u nycrb F,, 0003HAIaET MHO-

JKECTBO KJIACCOB BBIUETOB IO MOJYJIIO P’ HaJI KOJIBIOM IEJIbIX IayCCOBBIX YUCEJ B MHUBOM
kBasipaTuanoM noste Q(v/—d) ¢ HopMaMu, KOTopble cpaBHEMEI ¢ 1 o Mosymio p™. B nanmoit
cTaTbe MbI IOJIydaeM IOJUHOMUAJIbHBIE IIPEJICTABIIEHNs JeCTBUTEIBHON 1 MHOMOMN 4YecTeit
CTereneil OPOKAAIOIIETO eJeMeHTa U 4+ 10y d IMKINIecKo# rpymnbl Ep,. DTH npeacrasie-
HUSI TIO3BOJISIIOT MOJIYYIUTh “KOPHEBBIE TPAHUIIBI’ SKCIIOHEHIINAIBHON CyMMbI B HEDABEHCTBE
Typana-dpuéma-Kokempr. Takzke GbLIO IOCTPOEHO HOBOE CUMENCTBO IOCJIEI0OBATEIHHOCTER
[ICEBJIOCIy YAHHBIX YUCEJI, KOTOPbIE IIPOXOJIAT CEPUAJIBHBIN TECT HA IICEBJIOCIIY YaiiHOCTD.

Karoueswie caosa: muumoe K6adpamuinoe noie, HOpMeHHas epynna, nceeilocayatinoe wuc-

A, decnpunancun.
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