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THE DYNAMICAL PROBLEM ON ACTING CONCENTRATED
LOAD ON THE ELASTIC QUARTER SPACE

The wave field of an elastic quarter space is constructed when one face is rigidly fixed and a
dynamic normal compressive load acts on the other along a rectangular section at the initial
moment of time. Integral Laplace and Fourier transforms are applied sequentially to the
equations of motion and boundary conditions in contrast to traditional approaches when
integral transforms are applied to solutions’ representations through harmonic functions.
This leads to a one-dimensional vector homogeneous boundary value problem with respect
to unknown displacement’s transformants. The problem was solved using matrix differential
calculus. The original displacement field was found after applying inverse integral transforms.
For the case of stationary vibrations a method of calculating integrals in the solution in
the near loading zone was indicated. For the analysis of oscillations in a remote zone the
asymptotic formulas were constructed. The amplitude of vertical vibrations was investigated
depending on the shape of the load section, natural frequencies of vibrations and the material
of the medium.
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1. INTRODUCTION

During the construction and analysis of structures when dynamic or static
loads appear, stress arise and concentrate in elastic bodies. These stresses
can deform and even break the structure. Therefore they must be taken into
account during design calculation. Because of this, problems of the elasticity
theory appear in mathematical physics.

These problems were considered in a static and dynamic statements by
many authors for different objects under different initial and boundary condi-
tions [1-4]. An object such as a quarter space can be considered as a model
before solving a similar problems for an infinite or semi-infinite layer and then
for a plate. A quarter space is a special case of a spatial wedge. In particular

for the second boundary value problem for a spatial wedge the exact solution
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was constructed by Ya. S. Uflyand [5]. In another work [6], the exact solution
for the case, when normal displacements and tangential stress are given, was
constructed. The exact solution of the mixed problem of the elasticity the-
ory for a quarter-space in the static statement was found by G. Ya. Popov in
[1]. Tt is essential that a new method was used in the solving of this problem,
based on representation of new functions which are the sum of displacements’
derivatives [7|. This method was successfully applied to solving Lamb problem
[8]. Also using this method, homogeneous and inhomogeneous problems of
the elasticity theory for a semifinite layer were solved [7|. The development of
methods for problems of the elasticity theory for various objects, in particular
for a quarter space, was also carried out by A. M. Alexandrov in [9]. A general
solution for an elastic quarter space contact problem was presented in [10].
Dynamical stresses in elastic half-space were analysed in [11]. Plane contact
problem on the pressure of a stamp with a rectangular base on a rough elastic
halfspace was considered in [12].

Based on the results of [1; 8], as well as the method of representing the
equations of motion in terms of two jointly and one independently solvable
equations, proposed in [7], the aim of this work is to obtain the exact formulas
for displacements that appear in a quarter space when a dynamic compressive

load acts on one of its faces.

2. MAIN RESULTS

2.1. STATEMENT OF THE PROBLEM.

An elastic quarter space x > 0, —o0 < y < 00, 0 < z < 00, is considered.

At the moment of time ¢ = 0 dynamic normal load

o (2,y,2,)].—o = —p(z,y) P(t)
is applied to the boundary of the quarter space z = 0 across the rectangular
area 0 < x < A, —B < y < B the tangential stresses over the entire XQOY
plane are zero. The face x = 0 is rigidly fixed. The nonstationary points’
displacements of the quarter space u(z,y,z,t), v(z,y,z,t), w(x,y,z,t) are
required to be determined with zero initial conditions. The statement leads to

the following boundary conditions

0.(2,y,0,t) = —p(z,y)P(t), 0<x < A; —-B<y<B (1)



0.(2,y,0,t) =0, > A; |y| > B
sz(:c,y,O,t) =0, sz(x,y,o,t) =0
u(07yazat) = v(O,y,z,t) = UJ<O,y,Z,t) =0

The equations of motion in vector form are (8]

Au,v,w) +

2 <8® 00 8@) _p<82u 0%v 82w> 2)

dx’ 9y’ 02) G\ o2 o2’ o

k—1

where A is the Laplace operator, k = 3 — 4u, u — Poisson’s ratio, © =
% + % + %—;‘) — volume expansion, p — density of the medium material, G —
shear modulus; & = c%, ¢ — wave propagation speed.

To obtain a solution to the posed problem, it is enough firstly to obtain a
solution when the dynamic force concentrated at an arbitrary point (a,b) of

the face z = 0, and then distribute it over the required section, i.e.

p(z,y) = 0(x —a)d(y —b)

Let’s set up a dimensionless coordinate system
x —b z - 1
sl W )’5:’75:()15 (3)
a a

Further, the “waves” are omitted, implying the replacement (3), introduce the

new functions |7]

0 0
Z(z,y,2) = 8—xu(aj,y, z) + 8—yv(m,y, 2)
N (4)

0 0
Z(.’E,y,Z) = %U(Jf,y,Z) - Fyu(q%y? Z)

Then the system of equations of motion (2) and the boundary conditions (1)

are rewritten in the form relatively new functions.

2 0 ow O*W
AW+H—182<Z+8Z "o -
2 ow 0“Z
o~ 2~
a7 =22 (6)
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wZz(x,y,0,t) 4+ (1 — u)aaZW(a:,y, 0,t) = —Hcﬂx —1)é(y)P(t)

0
VaeyW(z,y,0,t) + 6—Z(x,y, 0,t) =0
z
0 ~
9 Z(z,y,0,t) =0
5,2 (@9,0,)
u(0,y,2,t) = v(0,y,2,t) = w(0,y,2,t) = 0
where Vg, = 8:62 + 5’;
The original initial boundary value problem takes the form (5)-(7) under

the initial conditions

[W,Z,ZH - 8[WZZH —0 (8)
t=0 8t t=0

After finding the unknown functions W, Z, Z the Poisson equations should be
solved in order to determine the displacements u and v

0 0 ~ 0 0 ~

Vopu=—24——2,V —Z+ —Z 9

Wl T oy Y T oY T e ®)

2.2. REDUCING THE PROBLEM TO A VECTOR ONE-DIMENSIONAL

PROBLEM

The Fourier transform with respect to the variable y, sin - transform with
respect to the variable z and the Laplace transform with respect to the variable

t, with parameters 3, a and p respectively are applied successively to (5), (6).

[ oluNe oo o]

=TI

The following conditions are assumed to be additionally satisfied [1]

(z,y,z,t
Z(x,y,2,t)

] Y sin ax e 7Pt dy da dt (10)

Z5(0,2) =0, Z5(0,2) =0 (11)
The function Zagp(z) satisfies the homogeneous problem
Zllg(2) = (N + ) Zagp(2) = 0, 0 < 2 < 00, Zg,(0) =0 (12)

and therefore Z(:p, y,z,t) = 0. The system of equations (5) and the boundary
conditions (7) take the form

2 k—1 k—1
" / o N2 1% _ ZW =0
aﬁp(z) + p QL 1 aﬁp('z) k1 ap(2) e 1 aBp (13)
ok +1

ap(2) — mNzWC/Mﬁp( z) =N - Zapp(2) = * Zagp(z) =0

—1
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—N*Weapp(0) + Zl5, =0

k—1
(3 = W)Zapp(0) + (L= )Wi, (0) = =5 -sina - B,

i (14)
P, = /P(t)eptdt; N? =a? + g%
0

To rewrite the system (13) in vector form, the unknown vector of the displace-

ment’s transformant is introduced

as well matrices

1 0 0 1 k=1 0 r=l
I= , — k+1 ,P: +1 7r:[wz k+1
(0 1) ° (ﬂf 0) (0 %> (0 1)

So, the system (13) takes form

==

Loy(2) =0, 0 < z < o0 (15)
where the differential operator Ly has a form
Loy (2) = Iy"(2) +2Qy'(2) — NQPy(z) — pQTy’(z)

The solution of the vector equation (15) is constructed on the basis of the
matrix equation’s solution L [Y(2)] = 0. The substitution Y(z) = VI is
made to form the characteristic matrix M(s) = Is%? + 2Qs — N2P — p?T.

Inverse matrix has a form

2 ktla2 2 2
-1 — 1 7= %N —-D _H—SI
M~ (s) Z 25 N2 2 _ N2l 2r—1
[Tizi(s — i) e s°— N1 —p i

-1
S1 = — N2+H p27 82:_vN2+p27
K

+1
-1
§3 = N2+H+1p27 s4 =/ N?+p?
K

Here s; (i = 1,4) are roots of the characteristic equation det[M(s)] = 0. The

solution of the matrix equation is constructed by the formula [13]

Y_(2) L fesle(s)ds

2
C
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where C' is a closed contour encompassing all zeros of the matrix’s determinant
M(s). The residues at the poles s3 and s4 give a growing solution at infinity
and are therefore discarded. The residues at the poles s; and so give a solution

decreasing at infinity. After calculation a decreasing solution takes a form

2
1 A (rtDNZ 1 7<”f1)A2 1
_ —A1z [ (r=1)Aq —Asz (r—1)
Y_(Z) - 2 ¢ ( (k+1)N2 + 2p26 _ (s+1) pr2 N2 (16)

=1 A1 (k—1) Ay

where A} = /N2 +p?, Ay =,/N?+ p?,i’jr_l)l)

The solution of the vector equation (15) is constructed in the form

F(2) = Y_(2) @)

where constants C;, ¢ = 0,1 are found by satisfying the boundary conditions

(14). Thus, a system of linear algebraic equations is obtained

KL 2N {AlAQ - N? - %} Co+p*C1=0

k—1 Aq
2 Rl 1 _N2_P e I/
pCO+2/@+1A2 [AlAg N 2}01— wrl Ga sin @ Pp

after solving it the expressions for the transformants were found

i A
Wagp(2) = SIGL;* : pr [—2N%e212 4 (2N? 4 p?)e227)
sin «v N2 A 9 2 A (17)
Zaﬁp(Z) = a . Ppi [—2A1A2€_ 1z + (2N +p )6_ 2z:|
A = AN* 4+ AN?p? 4+ p* —AN2A Ay (18)

Based on formulas (9), (12), the transformants of the remaining displace-

ments are found

tasp(2) = g Zaip(2), Vsp(z) = g Zap(2) (19)

Thus, an exact solution to the posed vector problem (13) (14) in the transform

space was obtained.
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2.3. CONSTRUCTION OF THE ORIGINAL SOLUTIONS

After applying the inverse integral transformations to the solution (17), the

original vertical displacement was obtained

Wiz, y,zt) = 27r2Ga27m/// 2N26_A1Z+

—oo 0

—i—(ZN2 +p )e_AQZ] sin o €'Y sin az ePtdp d dov

[ = (\—ioo, A+ i00)
Using the parity of the integrand and applying Euler’s formula, displace-

ment is rewritten in the form

1 Az —Arz

—00 —00

—|—(2N2 +p )eng-z] ezﬁy [efz(zfl)a _ e*l(erl)a eptdpdﬂ do

In order to get rid of the double integral over the parameters of the Fourier
transforms, the relation connecting the Fourier and Hankel transforms |14] was

used

. 0o oo . 00
o / / ( a2 4 52 + X2 > 1ax—lﬁydad5 — /SF( /2 + XZZ)X
—00 —00 0
x Jo(sv/x? 4+ y?)ds

where Jy(s) is the Bessel function, x1 = p, x2 = Q—j&p. After simplifications,

formula for displacement takes a form

11 T F(s
W(x’y’z’t):wGa%i/Pp/ A()-S[Jo(s (x —1)2+y?)—
l 0

—Jo(s\/(x + 12 + y2)} ePtds dp

-1
Fs)=/s2 + 222 [_45 e‘w—l—(QsQ—l—pQ) \/W]

k+1

-1
Ay = 45 + 45%p? + pt — 45%\/s2 + p2 [ s2 + Zi—i-lpz
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Using the parity of the Bessel function Jy(s), continue the integrand in an odd

way to the interval (—oo, 0)

1 1 OOFS
Wizt = —oon [ 7 [ B oG24 -
l —00

—Jo(sv/(x +1)2+ yz} ePlds dp

According to the obtained solution, the displacement from the distributed over

a rectangular area load can be found

A B 00
WAy zt) = st [ [ [ 1y [ B [nev@=ar v =)~
0 —-B 1 —0o0

B

—Jo(sv/(z+a)2 + (y — b)Q} ePldsdpdadb (20)

Formula was written in the initial coordinate system.

2.4. STEADY-STATE OSCILLATION CASE

Suppose that the load applied across the area 0 < =z < A; —B < y <
B over the plane X0Y changes according to the harmonic law P(t) = ™!
and p(z,y) = P, where P — constant intensity of the load, w — is a natural
frequency of vibrations. In this case, substituting into the constructed solution

(20) p = iw, the displacement is written in the form

TGa

A B o
WAy zsw) =~ [ [ [ EEE S [T+ = 0P
0 —B—00

—Jo(sy/(x + a)> + (y — b)2)] dsdadb (21)

F(s;w) = dy [—2826_51Z + (25% — w2)e_52z}
Ay, = 4s* — 45%0% + wt — 452610 = (252 — w2)2 — 45%5185. (22)

0 = /82 —w?, 52:\/32—%(,‘12 (23)

Since the expression (23) includes the multivalued functions [3], they have to

be fixed. And after making cuts, using the contour integration methods, the
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displacement is calculated. It is necessary that from the loaded rectangle on
the quarter space’s face where the load is applied, the energy is carried away to
infinity by each of the two types of possible waves. These requirements make
it possible to fix multivalued functions v/s2 — w? u 4 /s2 — :—I}uﬂ 3; 8]

when [s| > w; |s| > g—ﬂw D0 = Vs —w? 5y = - H—ﬁcﬂ
(24)
when [s| < w; |s] < Hﬁw 0 = —ivVw? —s?; 6o = —i 1w2—32

Damping into the environment was introduced. The energy flow must be di-
rected away from the place where the load is applied. The root of the equation
(22), 3], is the number s = £kr — the wavenumber related to the propagation
velocity of the Rayleigh wave. The denominator has no other roots for such
a fixation of §; and d5. Going around the branch points in the corresponding
loops, choosing §; and d2 on the corresponding sections of the loop, so that
the requirements (24) are satisfied. Also taking into account the residue in the
Rayleigh root, the solution for plane z = 0 is obtained

2 k—1,2
24w k: —’_H_lw AB

F’(kR) kgr,1
k—1
Vit 2 _ 2

2i s\ hw? = AB

202 / Joi (w,y)ds+
(252 — w2)? + 452/w? — H+1w2 — 2

] et

w

(252

CWAP 2y, 0:0) = -

7 (z,y)+

+2 - 1 TP (2, y)ds (25)
T el w?)® + 1654 <s2 - ”+1w2) (w2 — s2)
k+1
A B
WhereJ xy://[ <S\/(x—a)2+(y—b)2>—
0 -B

—Jo <5\/(33 +a)’+ (y— b)Qﬂ dadb (26)

52 — w? 1253 — 8sw

2 Vs2 — w?
Ii-‘rlw

kr = ggi—tos-w, where the approximate formula from [3] was used.

F'(s) = 8s (25* — w?
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If the formula (25) is being rewritten in terms of wavenumbers

-1
ﬁ,klz r w=

w
ko = —
2 Co k+1 c1

c1 is longitudinal wave velocity; co is shear wave velocity. The value of the

F(gii)'s coincides with that one in Lamb’s problem [3]. The

integrand in (21)
difference with the work [8] is in the form of the function J;}iB(x,y). Thus,
under the assumption (11) that the functions Z(0, 2) and Zs(0, z) are equal
to zero, the solution turned out to be practically identical to the solution of

the Lamb problem.

2.5. DISPLACEMENT FOR LARGE VALUES VIBRATION FREQUENCY
For large values of frequency w, using the expansion

1 5
22 3 4 2 <1

1 1
(I—-x)2=1- "= =2 — — <
8 16 128

1
2"
1) -

and based on formulas (2 (23), a calculation formula for the displacement

was obtained in the form

G
WAB(m y,0; w)

where F(s;w) =

o~
VA
S
/N
5
|
\_/
_|_

&
ﬁ;
_|_
o~
CIJ
E

(3]
—
E

|
—_
~—
|
o~
VA
no
—
€ |»
1

3

=
_I_
€
N

=

[\]
_I_
o

x

w
——

L 1, Lo 1 Lo 1
B T T R A VR T

2.6. TRANSFORMATION OF THE INTEGRAL JSAiB(x,y) FROM (26)

According to the scheme [8], consider the integral J;}iB(z,y). Using the

integral representation for the Bessel function [15]

Jo(sv/(x Fa)2+ (y —b)2) = = [ cos[s(z F a) cos ] - cos [s(y — b) sin1h] dep

EREN
o\wm
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which should be substituted into formula (26). After changing the order of in-
tegration and calculating the integrals as repeated, the procedure was detailed

in [2], formula (26) was rewritten in the form

AB |
J;}iB x,y 8 /SAB sin [sz cos ¢)] - cos [sy sin ] di, (28)
0

sin [sBsiny] 1 — cos[sA cos]
sBsiny sAcosy

where S4B (1) =

the function SS,A’B (1) is infinitely differentiable with respect to ¢ and also even,
therefore, the integration path can be taken equal to [—7/2, 7/2]. Subsequent

change of variables sint = 7 allows to rewrite (28) as

1
A,B 4AB dr
J5,1 (r,y) = — F;?;B(x,y)\/ﬁ,

-1

sin [sB7] 1 — cos [SA\/ 1— 72}
sBT sAV1 — 72

where Ff_;B (x,y) =

-sin [sm\/ 1-— 7'2] -cos [syT]

The quadrature formula of the highest degree of accuracy [16] was applied to
the integral (29)

S,T;

_44B
TN (@y Z FA5( (30)

where 7; = cos 2; Nl m, ¢ = 1, N are the zeros of the Chebyshev polynomial of

the 1st kind.

sin [s B 1 — cos [SA 1-— Tﬂ

Fff( Y) = B SA\/ﬁ - sin [sm/l - TZ2:| - cos [syT;]
3

(31)
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Substituting the expression into the displacement formula (25) and (27) the

final expression was constructed

2 _ k=1 2 N
4AB 2w\ kR — W
A
WA (2,9, 000) = = | = Flkr) Z
K—1
N Ve k=1 2 2
2i S\ kFiW" — S
+—wzz / i F;?T’F(x,y)ds—l—
(L 5 (252 — wz) + 452v/w? — K+1w2 — 52

w 2 (2 _ r=l, 2
812N s(s—ﬁw)Jm o
e — FAB (2, y)ds
i-1 2 (28 —w?)" 4 16s (52— +1w2) (w? — s2)
P
(32)

where F'(s) is defined in (26) and F;‘T’?(a:,y) —in (31). For large values of

frequency w the formula takes the form

N (o.¢]

G AB 4ABZ AB

P 0 = =S [Pt @, @)
i=17

where the function F(s;w) is defined in (27)
Thus, the formula has been simplified to the calculation of single integrals
of continuous functions, which is not difficult if oscillations in the near zone

are of interest.

2.7. EXPRESSIONS FOR FAR FIELD DISPLACEMENTS

The calculation of integrals in (32), (33) for large values of x and y is
difficult due to the presence of an oscillating function in the integrand. To
eliminate this difficulty for large values of r = \/JWy2 , the asymptotic ex-
pressions for analyzing the far field is advisable to obtained. In the integral

(28) the change of variables z = rcos ¢, y = rsin ¢, A = tr was done

3
J;‘l’B(r cos ¢, rsin ¢) = 448 Im /Sf73(¢)eiACOS(¢¢)d¢+
’ 7'('
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5 (39

2
+ / SHP(W)e? @y 50 < ¢ <

0
The stationary phase method was used for the analysis of asymptotics [8; 17],
where the role of the function for the analysis of asymptotics, f(¢) is played
by cos(¢F ), and the role function ¢(1)) is an infinitely differentiable function
s ’B(z/J). The first integral has a stationary point and the second has not,
therefore, its contribution to the asymptotics of (34) can be neglected. The

first integral in (34) can be represented as the sum
4AB ? z
J;‘iB(r cos ¢, rsin ) = —— Im /+/ Sf,B(w)ei)\cos(qﬁf@dw‘
’ T
0 @

where in the first integral the stationary point is at the end of the integration
path f’(¢) = %cos(d; —¢) =0 for ¢ = ¢ and f/(¢)) = —1 < 0, a in the
second integral — at the beginning of the integration path. After application

of theorems 2 and 3 [17], formula (34) was rewritten

A,B . 2AB . A.B 1
) = — . g — < <
Jii (rcosé,rsing) et [sin sr — cos sr] - Si7(p) + O . 0<¢<
(

w
ol
S—

SAB () = sin [sB'sin Y] 1—cos[sAcost]
sBsinvy sAcosy

Substitution of (35) into formulas (25) and (27) makes it possible to determine

the displacement W (z, y, 0; w) in the far field r — oco. As in the work [3; 8| only

the Rayleigh term makes the main contribution to the asymptotic behavior of
the displacement in the far field, the highest values are achieved with the angles
¢=0and ¢ =5

JihB i ‘ = /I (sinkgr — cos kgr) x
jp1 (1 cOS @, Tsin ) smtiget ST (sinkgr — coskgr)

coskrA sinkgB 1
x[— shnd, hin ]+o<r> (36)

2.8. DISCUSSION AND NUMERICAL RESULTS

For numerical implementation, the displacement should be multiplied by

e™* and the real or imaginary part should be separated. The graphs are given
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for the function %Im WAB(z,9,0;w) from (32) for values of Poisson’s ratio
= % and p = % for frequencies w = 0.3; 1; 3. For large values of frequencies
formula (33) was used. Three forms of the load distribution section across the

face z = 0 were considered
1. B = A/2 - the load is distributed over a square;

2. B = A - the load is distributed over a rectangle extended along the Oy

axis;

3. B = A/4 - the load is distributed over a rectangle extended along the

Oz axis.

To analyze the far-field r — oo, the asymptotic equalities (35), (36) were used,
substituted into the expressions for the displacement (25), (27)

Comparing the graphs of vertical displacements for the same frequency
w = 0.3 and Poisson’s ratio g = 1/3 under different sections of the load
distribution (Fig. 1, Fig. 2, Fig. 3), it can be seen that the maximum absolute
values equal to 2.5 achieved with the shape of the section B = A, which
corresponds to a rectangle elongated along the y-axis. At the same time, the
displacement has a maximum amplitude which is approximately 2 units. In the
case when the load is distributed over a rectangle elongated along the x-axis,
the displacement has a minimum amplitude 0.6 and its maximum displacement
is about 0.7 units.

In the case when the load is distributed over the square B = A/2, with
an increase in the vibration frequency (Fig. 1, Fig. 4, Fig. 7), the amplitude
of displacement grows. In addition, in the case when the oscillation frequency
is equal to 3, negative displacements are observed, which means the lifting of
the face of the quarter space. Also growing of the amplitude with increasing
frequency can be seen from Fig. 2 and Fig. 5, which corresponds to the case
B = A, where the amplitude increased from 2 units (w = 0.3) to 4 units
(w = 1). There is also the effect of raising the edge of a quarter space due to
the presence of negative amplitudes’ zones (Fig. 5).

Comparing the value of vertical displacements for different values of Pois-
son’s ratio (Fig. 5, 6), it can be seen that the behavior of the graphs is similar,

but for values of u = 1/3 the amplitude of oscillations is greater.
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Figure 2: B = A, w =03, u =
1/3 1/3

Figure 3: B = A/4, w =103, p = Figure 4: B = A/2, w =1, p =
1/3 1/3

The vertical displacements’ graphs in the remote zone of the load applica-
tion area, depending on the vibration frequency with Poisson’s ratio equal to
1/3 and load section B = A, represented in the Figure 8. As the distance from
the load distribution section increases, the oscillations decay. Similar to the
results for the near load zone, the maximum displacements occur in the case
of the load section’ shape B = A. The amplitude is greater for large values
of vibration frequencies. With a decrease in the frequency of oscillations, the

amplitudes are practically equal to zero.
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Figure 5: B=A, w=1, u=1/3 Figure 6: B=A, w=1, p=1/4

-0.5 -0.05

-1 —0.10

T T T T T T T T
150 175 2200 225 250 275 300 325 350
r

Figure 7: B = A/2, w =3, pu = Figure 8: B=A, u=1/3.
1/3

3. CONCLUSION

The dynamical problem’s solution of the elasticity for the quarter space was
derived, when one the faces is rigidly fixed and another is under the influence
of the normal dynamic compressive load, applied at the initial moment of time
and distributed across a rectangular section. Application of the integral trans-
form method directly to the movement equations reduced the initial problem

to the one-dimensional vector problem. The last one was solved exactly using
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the matrix differential calculus. The proposed approach makes it possible to
obtain an exact solution of the problem in the transform’s space. The case of
steady state oscillations was investigated and vertical amplitude was analyzed
in near loading and remote zone, for which asymptotic formulas were derived.

At the same time, it is also possible to construct and study the normal
stress arising in a quarter space and compare the amplitudes of all three dis-
placements. Using the proposed approach, the similar dynamical problem for
the elastic semi-infinite layer, when different boundary conditions are set on

the bottom face is under consideration.

Decenxo I. O., Bondapenro K. C.
JIMHAMIYHA 3AJAYA TIPO JIIIO 30CEPEJ>KEHOT'O HABAHTAYKEHHSI HA MIPY>KHUI UBEPTH
ITPOCTIP

Pesrome

IlobymoBamO XBHUIIBOBE ITOJIE MPYZKHOTO YBEPTH IIPOCTOPY, KON OHY I'PAHUIIO *KOPCTKO 3a-
KpINJIeHO, & Ha IHMI# MO0 MPSAMOKYTHIN JIISHIN Jli€ HecTal[loHapHE HOpMaJibHE CTHUCKAaYe
HaBaHTaXXEHHsSI B [TOYATKOBUII MOMeHT dacy. [uTerpasnbhi neperBopenns Jlammaca ta @yp’e
3aCTOCOBAHO TOCJIIJOBHO JO PIBHAHB PyXy Ta JI0 TPAHUYHUX YMOB, Ha BiIMiHY BiJ Tpaju-
MIHUX TiIXOIB, KON IHTErpaJibHi MEPEeTBOPEHHS 3aCTOCOBYIOThCA 0 MOJAHHS PO3B’SI3KiB
qepe3 rapMoHiuHi yHKIl. 1le npuBoAUTHL 10 OJITHOBUMIPHOI BEKTOPHOI OJIHOPIIHOT KpaiftoBol
3a/1a4i BiJIHOCHO HEBiOMHUX TpPaHCGOPMAHT HepeMilleHb. 3a1ady PO3B’s3aHO 38 JOIOMOIOI0
MaTPUYHOTO AudepeHIiaabHOro JucjaeHHs. [losie BUXiHUX epeMilleHsb 3HAMIEHO MiCs 3a-
cTocyBaHHsT OOEpHEHUX IHTerpaJibHUX MepeTBOpeHb. Jljis BumaaKy cTarlioHapHUX KOJIMBAHD
BKAa3aHO CIOCiO 00YMCIeHHsT ¥ PO3B’sI3Ky KBaApaTyp B OMKHIN 30HI HaBanTaykeHHs. J[st
aHaJIi3y KOJIMBaHb y Bijtasieniit 3011 mobypoBano acuMmrnrorudHi dpopmysu. Jlocmimkeno am-
IUTTY/1y BEPTHUKAJBHUX KOJIMBAHb B 3JIE2KHOCTI Bijl (DOPMU IIISTHKY HaBaHTaKEHHSI, BJIACHUX
9aCTOT KOJIMBaHb Ta MaTepiaJly CEPEIOBUIIA.

Kar0u06i caosa: mouHuti po3e’azok, nNpyHcHUl 48epmvnpocmip, OUHAMIYHE HABAHMAHCEH-

HA, THMEZPAALHT NEPEMBOPEHHA.

Decenxo A. A., Bondapenro K. C.
JINHAMUYECKAS 3AJIAYA O JEMCTBUU COCPEJOTOYEHHOI HATPY3KU HA YIIPYT'OE YET-
BEPTbH ITPOCTPAHCTBA

Pesrome

IlocTpoeno BosIHOBOE 10JIE YIIPYTOI'O Y€TBEPTH IPOCTPAHCTBA, KOTJ[A O/IHA I'PAHb KECTKO 3a-
KPeIlIeHa, a Ha JIPYTroil 110 IPSIMOYTOJIbHOMY YYacCTKY JeHCTBYEeT HeCTallMOHAPHAs HOPMaJlb-
Hasl CXKUMAIOIIAsl HATPY3Ka B HAYaJbHBIN MOMEHT BpemeHu. VHTerpabHbIe Tpeobpa3soBaHUst
Jlamtaca n @ypbe NMpUMEHEHBI MOCTEIOBATEIBHO K YPABHEHUSIM JBUXKEHUS W TPAHIIHBIM
YCJIOBHUSAM, B OTJINYHME OT TPAAUIIMOHHBIX MOIXOIO0B, KOTJA MHTErpaJjibHble MpeoOpa3s0OBaHUs

NIPUMEHSIOTCS K [IPEJICTABJIEHUSIM DEIlleHHii Yepe3 rapMoHudeckue MYHKIUU. DTO IPUBOJIUAT
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K OJHOMEPHOII BEKTOPHOII OMJHOPOTHON KpPaeBOU 3ajlade OTHOCUTEJIbHO HEU3BECTHBIX TPAHC-

dopmaHT mepemernteHnii. 3aa4ua PEIieHa ¢ TOMOIIBI0 MATPUIHOTO AUPDEPEHITNATEHOTO HC-

qucsenust. [losie ncxonHpIX IEpEMeITeHnit HaiIeHO TI0CJIe IPUMEHEHNsT OOPATHBIX HHTErPaJIb-

HBIX IIpeobpas3oBanmii. s coydasi crarmoHapHBIX KOJIeOAHHUI yKa3aH CIOCOO BBIYMCIIEHUS

B DeIIeHUN KBaIpaTyp B OJMKHeH 30He HarpykeHus. s anasmsa xosiebaHUl B OT/1aJI€H-

HOU 30HE IIOCTPOEHBI ACHUMIITOTUYIECCKHNE (bOpMyJ'H)I. I/ICCJIG,ZLOBaHa aMIJINTyla BEPTUKAJIBHBIX

KOj1e0aHMil B 3aBUCUMOCTH OT (POPMBI yIaCTKa HATPY3KHU, COOCTBEHHBIX YACTOT KOJIEOAHMI 1

MaTepuaJia CPeJIbl.

Karoueswie caosa: mownoe pewerue, ynpyaoe 4meepmvbnpocmparcmeo, JUHAMUYECKAs Ha-

2pY3Ka, UHMe2pasbHvLe NPeobPa3o6aHUs.
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