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THE DYNAMICAL PROBLEM ON ACTING CONCENTRATED
LOAD ON THE ELASTIC QUARTER SPACE

The wave field of an elastic quarter space is constructed when one face is rigidly fixed and a
dynamic normal compressive load acts on the other along a rectangular section at the initial
moment of time. Integral Laplace and Fourier transforms are applied sequentially to the
equations of motion and boundary conditions in contrast to traditional approaches when
integral transforms are applied to solutions’ representations through harmonic functions.
This leads to a one-dimensional vector homogeneous boundary value problem with respect
to unknown displacement’s transformants. The problem was solved using matrix differential
calculus. The original displacement field was found after applying inverse integral transforms.
For the case of stationary vibrations a method of calculating integrals in the solution in
the near loading zone was indicated. For the analysis of oscillations in a remote zone the
asymptotic formulas were constructed. The amplitude of vertical vibrations was investigated
depending on the shape of the load section, natural frequencies of vibrations and the material
of the medium.
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1. Introduction

During the construction and analysis of structures when dynamic or static
loads appear, stress arise and concentrate in elastic bodies. These stresses
can deform and even break the structure. Therefore they must be taken into
account during design calculation. Because of this, problems of the elasticity
theory appear in mathematical physics.

These problems were considered in a static and dynamic statements by
many authors for different objects under different initial and boundary condi-
tions [1–4]. An object such as a quarter space can be considered as a model
before solving a similar problems for an infinite or semi-infinite layer and then
for a plate. A quarter space is a special case of a spatial wedge. In particular
for the second boundary value problem for a spatial wedge the exact solution
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was constructed by Ya. S. Uflyand [5]. In another work [6], the exact solution
for the case, when normal displacements and tangential stress are given, was
constructed. The exact solution of the mixed problem of the elasticity the-
ory for a quarter-space in the static statement was found by G. Ya. Popov in
[1]. It is essential that a new method was used in the solving of this problem,
based on representation of new functions which are the sum of displacements’
derivatives [7]. This method was successfully applied to solving Lamb problem
[8]. Also using this method, homogeneous and inhomogeneous problems of
the elasticity theory for a semifinite layer were solved [7]. The development of
methods for problems of the elasticity theory for various objects, in particular
for a quarter space, was also carried out by A. M. Alexandrov in [9]. A general
solution for an elastic quarter space contact problem was presented in [10].
Dynamical stresses in elastic half-space were analysed in [11]. Plane contact
problem on the pressure of a stamp with a rectangular base on a rough elastic
halfspace was considered in [12].

Based on the results of [1; 8], as well as the method of representing the
equations of motion in terms of two jointly and one independently solvable
equations, proposed in [7], the aim of this work is to obtain the exact formulas
for displacements that appear in a quarter space when a dynamic compressive
load acts on one of its faces.

2. Main Results

2.1. Statement of the problem.

An elastic quarter space 𝑥 > 0, −∞ < 𝑦 < ∞, 0 < 𝑧 < ∞, is considered.
At the moment of time 𝑡 = 0 dynamic normal load

𝜎𝑧 (𝑥, 𝑦, 𝑧, 𝑡)|𝑧=0 = −𝑝(𝑥, 𝑦)𝑃 (𝑡)

is applied to the boundary of the quarter space 𝑧 = 0 across the rectangular
area 0 ≤ 𝑥 ≤ 𝐴, −𝐵 ≤ 𝑦 ≤ 𝐵 the tangential stresses over the entire 𝑋𝑂𝑌
plane are zero. The face 𝑥 = 0 is rigidly fixed. The nonstationary points’
displacements of the quarter space 𝑢(𝑥, 𝑦, 𝑧, 𝑡), 𝑣(𝑥, 𝑦, 𝑧, 𝑡), 𝑤(𝑥, 𝑦, 𝑧, 𝑡) are
required to be determined with zero initial conditions. The statement leads to
the following boundary conditions

𝜎𝑧(𝑥, 𝑦, 0, 𝑡) = −𝑝(𝑥, 𝑦)𝑃 (𝑡), 0 ≤ 𝑥 ≤ 𝐴; −𝐵 ≤ 𝑦 ≤ 𝐵 (1)
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𝜎𝑧(𝑥, 𝑦, 0, 𝑡) = 0, 𝑥 > 𝐴; |𝑦| > 𝐵

𝜏𝑧𝑥(𝑥, 𝑦, 0, 𝑡) = 0, 𝜏𝑧𝑦(𝑥, 𝑦, 0, 𝑡) = 0

𝑢(0, 𝑦, 𝑧, 𝑡) = 𝑣(0, 𝑦, 𝑧, 𝑡) = 𝑤(0, 𝑦, 𝑧, 𝑡) = 0

The equations of motion in vector form are [8]

∆(𝑢, 𝑣, 𝑤) +
2

𝜅− 1

(︂
𝜕Θ

𝜕𝑥
,
𝜕Θ

𝜕𝑦
,
𝜕Θ

𝜕𝑧

)︂
=
𝜌

𝐺

(︂
𝜕2𝑢

𝜕𝑡2
,
𝜕2𝑣

𝜕𝑡2
,
𝜕2𝑤

𝜕𝑡2

)︂
, (2)

where ∆ is the Laplace operator, 𝜅 = 3 − 4𝜇, 𝜇 — Poisson’s ratio, Θ =
𝜕𝑢
𝜕𝑥 + 𝜕𝑣

𝜕𝑦 + 𝜕𝑤
𝜕𝑧 — volume expansion, 𝜌 — density of the medium material, 𝐺 —

shear modulus; 𝜌
𝐺 = 1

𝑐2
, 𝑐 — wave propagation speed.

To obtain a solution to the posed problem, it is enough firstly to obtain a
solution when the dynamic force concentrated at an arbitrary point (𝑎, 𝑏) of
the face 𝑧 = 0, and then distribute it over the required section, i.e.

𝑝(𝑥, 𝑦) = 𝛿(𝑥− 𝑎)𝛿(𝑦 − 𝑏)

Let’s set up a dimensionless coordinate system

�̃� =
𝑥

𝑎
, 𝑦 =

(𝑦 − 𝑏)

𝑎
, 𝑧 =

𝑧

𝑎
, 𝑡 =

(︂
1

𝑐2

)︂
𝑡 (3)

Further, the “waves” are omitted, implying the replacement (3), introduce the
new functions [7]

𝑍(𝑥, 𝑦, 𝑧) =
𝜕

𝜕𝑥
𝑢(𝑥, 𝑦, 𝑧) +

𝜕

𝜕𝑦
𝑣(𝑥, 𝑦, 𝑧)

̃︀𝑍(𝑥, 𝑦, 𝑧) =
𝜕

𝜕𝑥
𝑣(𝑥, 𝑦, 𝑧) − 𝜕

𝜕𝑦
𝑢(𝑥, 𝑦, 𝑧)

(4)

Then the system of equations of motion (2) and the boundary conditions (1)
are rewritten in the form relatively new functions.⎧⎪⎪⎨⎪⎪⎩

∆𝑊 +
2

𝜅− 1

𝜕

𝜕𝑧

(︂
𝑍 +

𝜕𝑊

𝜕𝑧

)︂
=
𝜕2𝑊

𝜕𝑡2

∆𝑍 +
2

𝜅− 1
∇𝑥𝑦

(︂
𝑍 +

𝜕𝑊

𝜕𝑧

)︂
=
𝜕2𝑍

𝜕𝑡2

(5)

∆ ̃︀𝑍 =
𝜕2 ̃︀𝑍
𝜕𝑡2

(6)
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𝜇𝑍(𝑥, 𝑦, 0, 𝑡) + (1 − 𝜇)
𝜕

𝜕𝑧
𝑊 (𝑥, 𝑦, 0, 𝑡) = −𝜅− 1

4𝐺𝑎
𝛿(𝑥− 1)𝛿(𝑦)𝑃 (𝑡)

∇𝑥𝑦𝑊 (𝑥, 𝑦, 0, 𝑡) +
𝜕

𝜕𝑧
𝑍(𝑥, 𝑦, 0, 𝑡) = 0

𝜕

𝜕𝑧
𝑍(𝑥, 𝑦, 0, 𝑡) = 0

𝑢(0, 𝑦, 𝑧, 𝑡) = 𝑣(0, 𝑦, 𝑧, 𝑡) = 𝑤(0, 𝑦, 𝑧, 𝑡) = 0

(7)

where ∇𝑥𝑦 = 𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2

The original initial boundary value problem takes the form (5)-(7) under
the initial conditions[︁

𝑊,𝑍, ̃︀𝑍]︁ ⃒⃒⃒
𝑡=0

= 0
𝜕

𝜕𝑡

[︁
𝑊,𝑍, ̃︀𝑍]︁ ⃒⃒⃒

𝑡=0
= 0 (8)

After finding the unknown functions 𝑊,𝑍, ̃︀𝑍 the Poisson equations should be
solved in order to determine the displacements 𝑢 and 𝑣

∇𝑥𝑦𝑢 =
𝜕

𝜕𝑥
𝑍 − 𝜕

𝜕𝑦
̃︀𝑍, ∇𝑥𝑦𝑣 =

𝜕

𝜕𝑦
𝑍 +

𝜕

𝜕𝑥
̃︀𝑍 (9)

2.2. Reducing the problem to a vector one-dimensional
problem

The Fourier transform with respect to the variable 𝑦, sin - transform with
respect to the variable 𝑥 and the Laplace transform with respect to the variable
𝑡, with parameters 𝛽, 𝛼 and 𝑝 respectively are applied successively to (5), (6).[︃

𝑊𝛼𝛽𝑝(𝑧)

𝑍𝛼𝛽𝑝(𝑧)

]︃
=

∞∫︁
−∞

∞∫︁
0

∞∫︁
0

[︃
𝑊 (𝑥, 𝑦, 𝑧, 𝑡)

𝑍(𝑥, 𝑦, 𝑧, 𝑡)

]︃
𝑒𝑖𝛽𝑦 sin𝛼𝑥 𝑒−𝑝𝑡 𝑑𝑦 𝑑𝑥 𝑑𝑡 (10)

The following conditions are assumed to be additionally satisfied [1]

𝑍𝛽(0, 𝑧) = 0, ̃︀𝑍𝛽(0, 𝑧) = 0 (11)

The function ̃︀𝑍𝛼𝛽𝑝(𝑧) satisfies the homogeneous problem̃︀𝑍 ′′
𝛼𝛽𝑝(𝑧) − (𝑁2 + 𝑝2) ̃︀𝑍𝛼𝛽𝑝(𝑧) = 0, 0 < 𝑧 <∞, ̃︀𝑍 ′

𝛼𝛽𝑝(0) = 0 (12)

and therefore ̃︀𝑍(𝑥, 𝑦, 𝑧, 𝑡) ≡ 0. The system of equations (5) and the boundary
conditions (7) take the form⎧⎪⎨⎪⎩

𝑊 ′′
𝛼𝛽𝑝(𝑧) +

2

𝜅+ 1
𝑍 ′
𝛼𝛽𝑝(𝑧) −𝑁2𝜅− 1

𝜅+ 1
𝑊𝛼𝛽𝑝(𝑧) −

𝜅− 1

𝜅+ 1
𝑝2𝑊𝛼𝛽𝑝 = 0

𝑍 ′′
𝛼𝛽𝑝(𝑧) −

2

𝜅− 1
𝑁2𝑊 ′

𝛼𝛽𝑝(𝑧) −𝑁2𝜅+ 1

𝜅− 1
𝑍𝛼𝛽𝑝(𝑧) − 𝑝2𝑍𝛼𝛽𝑝(𝑧) = 0

(13)
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−𝑁2𝑊𝛼𝛽𝑝(0) + 𝑍 ′
𝛼𝛽𝑝 = 0

(3 − 𝜅)𝜇𝑍𝛼𝛽𝑝(0) + (1 − 𝜇)𝑊 ′
𝛼𝛽𝑝(0) = −𝜅− 1

4𝐺𝑎
· sin𝛼 · 𝑃𝑝

𝑃𝑝 =

∞∫︁
0

𝑃 (𝑡)𝑒−𝑝𝑡𝑑𝑡; 𝑁2 = 𝛼2 + 𝛽2;

(14)

To rewrite the system (13) in vector form, the unknown vector of the displace-
ment’s transformant is introduced

y⃗(𝑧) =

(︃
𝑊𝛼𝛽𝑝(𝑧)

𝑍𝛼𝛽𝑝(𝑧)

)︃
as well matrices

I =

(︃
1 0

0 1

)︃
, Q =

(︃
0 1

𝜅+1
−𝑁2

𝜅−1 0

)︃
, P =

(︃
𝜅−1
𝜅+1 0

0 𝜅−1
𝜅+1

)︃
, T =

(︃
𝜅−1
𝜅+1 0

0 1

)︃
So, the system (13) takes form

L2y⃗(𝑧) = 0, 0 < 𝑧 <∞ (15)

where the differential operator 𝐿2 has a form

L2y⃗(𝑧) = Iy⃗′′(𝑧) + 2Qy⃗′(𝑧) −𝑁2Py⃗(𝑧) − 𝑝2Ty⃗(𝑧)

The solution of the vector equation (15) is constructed on the basis of the
matrix equation’s solution L2 [Y(𝑧)] = 0. The substitution Y(𝑧) = 𝑒𝑁𝑧I is
made to form the characteristic matrix M(𝑠) = I𝑠2 + 2Q𝑠 − 𝑁2P − 𝑝2T.
Inverse matrix has a form

M−1(s) =
1∏︀4

𝑖=1(𝑠− 𝑠𝑖)

(︃
𝑠2 − 𝜅+1

𝜅−1𝑁
2 − 𝑝2 − 2𝑠

𝜅+1
2𝑠
𝜅−1𝑁

2 𝑠2 −𝑁2 𝜅−1
𝜅+1 − 𝑝2 𝜅−1

𝜅+1

)︃

𝑠1 = −
√︂
𝑁2 +

𝜅− 1

𝜅+ 1
𝑝2, 𝑠2 = −

√︀
𝑁2 + 𝑝2,

𝑠3 =

√︂
𝑁2 +

𝜅− 1

𝜅+ 1
𝑝2, 𝑠4 =

√︀
𝑁2 + 𝑝2.

Here 𝑠𝑖 (𝑖 = 1, 4) are roots of the characteristic equation det[M(𝑠)] = 0. The
solution of the matrix equation is constructed by the formula [13]

Y−(𝑧) =
1

2𝜋𝑖

∮︁
𝐶

𝑒𝑠𝑧M−1(𝑠)𝑑𝑠
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where 𝐶 is a closed contour encompassing all zeros of the matrix’s determinant
M(𝑠). The residues at the poles 𝑠3 and 𝑠4 give a growing solution at infinity
and are therefore discarded. The residues at the poles 𝑠1 and 𝑠2 give a solution
decreasing at infinity. After calculation a decreasing solution takes a form

Y−(𝑧) =
1

2𝑝2
𝑒−Δ1𝑧

(︃
(𝜅+1)𝑁2

(𝜅−1)Δ1
−1

(𝜅+1)𝑁2

(𝜅−1)
−Δ1

)︃
+

1

2𝑝2
𝑒−Δ2𝑧

(︃
− (𝜅+1)

(𝜅−1)
Δ2 1

− (𝜅+1)
(𝜅−1)

𝑁2 𝑁2

Δ2

)︃
(16)

where ∆1 =
√︀
𝑁2 + 𝑝2, ∆2 =

√︁
𝑁2 + 𝑝2(𝜅−1)

(𝜅+1)

The solution of the vector equation (15) is constructed in the form

y⃗(𝑧) = Y−(𝑧) ·

(︃
𝐶0

𝐶1

)︃

where constants 𝐶𝑖, 𝑖 = 0, 1 are found by satisfying the boundary conditions
(14). Thus, a system of linear algebraic equations is obtained⎧⎨⎩

𝜅+1
𝜅−1

2𝑁2

Δ1

[︁
∆1∆2 −𝑁2 − 𝑝2

2

]︁
𝐶0 + 𝑝2𝐶1 = 0

𝑝2𝐶0 + 2𝜅−1
𝜅+1

1
Δ2

[︁
∆1∆2 −𝑁2 − 𝑝2

2

]︁
𝐶1 = −𝜅−1

𝜅+1
2𝑝2

𝐺𝑎 sin𝛼 · 𝑃𝑝

after solving it the expressions for the transformants were found

𝑊𝛼𝛽𝑝(𝑧) =
sin𝛼

𝐺𝑎
· 𝑃𝑝

∆2̃︀∆ [︀
−2𝑁2𝑒−Δ1𝑧 + (2𝑁2 + 𝑝2)𝑒−Δ2𝑧

]︀
𝑍𝛼𝛽𝑝(𝑧) =

sin𝛼

𝐺𝑎
· 𝑃𝑝

𝑁2̃︀∆ [︀
−2∆1∆2𝑒

−Δ1𝑧 + (2𝑁2 + 𝑝2)𝑒−Δ2𝑧
]︀ (17)

̃︀∆ = 4𝑁4 + 4𝑁2𝑝2 + 𝑝4 − 4𝑁2∆1∆2 (18)

Based on formulas (9), (12), the transformants of the remaining displace-
ments are found

𝑢𝛼𝛽𝑝(𝑧) = − 𝛼

𝑁2
𝑍𝛼𝛽𝑝(𝑧), 𝑣𝛼𝛽𝑝(𝑧) =

𝑖𝛽

𝑁2
𝑍𝛼𝛽𝑝(𝑧) (19)

Thus, an exact solution to the posed vector problem (13) (14) in the transform
space was obtained.
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2.3. Construction of the original solutions

After applying the inverse integral transformations to the solution (17), the
original vertical displacement was obtained

𝑊 (𝑥, 𝑦, 𝑧, 𝑡) =
1

2𝜋2
1

𝐺𝑎

1

2𝜋𝑖

∫︁
𝑙

∞∫︁
−∞

∞∫︁
0

∆2̃︀∆ 𝑃𝑝
[︀
−2𝑁2𝑒−Δ1𝑧+

+(2𝑁2 + 𝑝2)𝑒−Δ2𝑧
]︀

sin𝛼 𝑒𝑖𝛽𝑦 sin𝛼𝑥 𝑒𝑝𝑡𝑑𝑝 𝑑𝛽 𝑑𝛼

𝑙 = (𝜆− 𝑖∞, 𝜆+ 𝑖∞)

Using the parity of the integrand and applying Euler’s formula, displace-
ment is rewritten in the form

𝑊 (𝑥, 𝑦, 𝑧, 𝑡) =
1

4𝜋2
1

𝐺𝑎

1

2𝜋𝑖

∫︁
𝑙

𝑃𝑝

∞∫︁
−∞

∞∫︁
−∞

∆2̃︀∆ [︀
−2𝑁2𝑒−Δ1·𝑧+

+(2𝑁2 + 𝑝2)𝑒−Δ2·𝑧]︀ 𝑒𝑖𝛽𝑦 [︁𝑒−𝑖(𝑥−1)𝛼 − 𝑒−𝑖(𝑥+1)𝛼
]︁
𝑒𝑝𝑡𝑑𝑝 𝑑𝛽 𝑑𝛼

In order to get rid of the double integral over the parameters of the Fourier
transforms, the relation connecting the Fourier and Hankel transforms [14] was
used

1

4𝜋

∞∫︁
−∞

∞∫︁
−∞

𝐹

(︂√︁
𝛼2 + 𝛽2 + 𝜒2

𝑖

)︂
𝑒−𝑖𝛼𝑥−𝑖𝛽𝑦𝑑𝛼𝑑𝛽 =

∞∫︁
0

𝑠𝐹 (
√︁
𝑠2 + 𝜒2

𝑖 )×

× 𝐽0(𝑠
√︀
𝑥2 + 𝑦2)𝑑𝑠

where 𝐽0(𝑠) is the Bessel function, 𝜒1 = 𝑝, 𝜒2 =
√︁

𝜅−1
𝜅+1𝑝. After simplifications,

formula for displacement takes a form

𝑊 (𝑥, 𝑦, 𝑧, 𝑡) =
1

𝜋𝐺𝑎

1

2𝜋𝑖

∫︁
𝑙

𝑃𝑝

∞∫︁
0

𝐹 (𝑠)

∆𝑠
· 𝑠
[︁
𝐽0(𝑠

√︀
(𝑥− 1)2 + 𝑦2)−

−𝐽0(𝑠
√︀

(𝑥+ 1)2 + 𝑦2)
]︁
𝑒𝑝𝑡𝑑𝑠 𝑑𝑝

𝐹 (𝑠) =

√︂
𝑠2 +

𝜅− 1

𝜅+ 1
𝑝2 ·

[︂
−4𝑠2𝑒−

√
𝑠2+𝑝2 + (2𝑠2 + 𝑝2)𝑒

−
√︁
𝑠2+𝜅−1

𝜅+1
𝑝2
]︂

∆𝑠 = 4𝑠4 + 4𝑠2𝑝2 + 𝑝4 − 4𝑠2
√︀
𝑠2 + 𝑝2

√︂
𝑠2 +

𝜅− 1

𝜅+ 1
𝑝2
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Using the parity of the Bessel function 𝐽0(𝑠), continue the integrand in an odd
way to the interval (−∞, 0)

𝑊 (𝑥, 𝑦, 𝑧, 𝑡) =
1

𝜋𝐺𝑎

1

2𝜋𝑖

∫︁
𝑙

𝑃𝑝

∞∫︁
−∞

𝐹 (𝑠)

∆𝑠
· 𝑠
[︁
𝐽0(𝑠

√︀
(𝑥− 1)2 + 𝑦2)−

−𝐽0(𝑠
√︀

(𝑥+ 1)2 + 𝑦2
]︁
𝑒𝑝𝑡𝑑𝑠 𝑑𝑝

According to the obtained solution, the displacement from the distributed over
a rectangular area load can be found

𝑊𝐴𝐵(𝑥, 𝑦, 𝑧, 𝑡) =
1

𝜋𝐺𝑎

1

2𝜋𝑖

𝐴∫︁
0

𝐵∫︁
−𝐵

∫︁
𝑙

𝑃𝑝

∞∫︁
−∞

𝐹 (𝑠)

∆𝑠
·𝑠
[︁
𝐽0(𝑠

√︀
(𝑥− 𝑎)2 + (𝑦 − 𝑏)2)−

−𝐽0(𝑠
√︀

(𝑥+ 𝑎)2 + (𝑦 − 𝑏)2
]︁
𝑒𝑝𝑡𝑑𝑠 𝑑𝑝 𝑑𝑎 𝑑𝑏 (20)

Formula was written in the initial coordinate system.

2.4. Steady-state oscillation case

Suppose that the load applied across the area 0 < 𝑥 < 𝐴; −𝐵 < 𝑦 <

𝐵 over the plane 𝑋0𝑌 changes according to the harmonic law 𝑃 (𝑡) = 𝑒𝑖𝜔𝑡

and 𝑝(𝑥, 𝑦) = 𝑃, where 𝑃 — constant intensity of the load, 𝜔 — is a natural
frequency of vibrations. In this case, substituting into the constructed solution
(20) 𝑝 = 𝑖𝜔, the displacement is written in the form

𝑊𝐴𝐵(𝑥, 𝑦, 𝑧;𝜔) =
𝑃

𝜋𝐺𝑎

𝐴∫︁
0

𝐵∫︁
−𝐵

∞∫︁
−∞

𝐹 (𝑠;𝜔)

∆𝑠𝜔
· 𝑠
[︁
𝐽0(𝑠

√︀
(𝑥− 𝑎)2 + (𝑦 − 𝑏)2)−

−𝐽0(𝑠
√︀

(𝑥+ 𝑎)2 + (𝑦 − 𝑏)2)
]︁
𝑑𝑠 𝑑𝑎 𝑑𝑏 (21)

𝐹 (𝑠;𝜔) = 𝛿2

[︁
−2𝑠2𝑒−𝛿1𝑧 + (2𝑠2 − 𝜔2)𝑒−𝛿2𝑧

]︁
∆𝑠𝜔 = 4𝑠4 − 4𝑠2𝜔2 + 𝜔4 − 4𝑠2𝛿1𝛿2 = (2𝑠2 − 𝜔2)2 − 4𝑠2𝛿1𝛿2. (22)

𝛿1 =
√︀
𝑠2 − 𝜔2, 𝛿2 =

√︁
𝑠2 − 𝜅−1

𝜅+1𝜔
2 (23)

Since the expression (23) includes the multivalued functions [3], they have to
be fixed. And after making cuts, using the contour integration methods, the
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displacement is calculated. It is necessary that from the loaded rectangle on
the quarter space’s face where the load is applied, the energy is carried away to
infinity by each of the two types of possible waves. These requirements make
it possible to fix multivalued functions

√
𝑠2 − 𝜔2 и

√︁
𝑠2 − 𝜅−1

𝜅+1𝜔
2 [3; 8]

when |𝑠| > 𝜔; |𝑠| > 𝜅−1
𝜅+1𝜔 : 𝛿1 =

√︀
𝑠2 − 𝜔2; 𝛿2 =

√︁
𝑠2 − 𝜅−1

𝜅+1𝜔
2

when |𝑠| < 𝜔; |𝑠| < 𝜅−1
𝜅+1𝜔 : 𝛿1 = −𝑖

√︀
𝜔2 − 𝑠2; 𝛿2 = −𝑖

√︁
𝜅−1
𝜅+1𝜔

2 − 𝑠2
(24)

Damping into the environment was introduced. The energy flow must be di-
rected away from the place where the load is applied. The root of the equation
(22), [3], is the number 𝑠 = ±𝑘𝑅 — the wavenumber related to the propagation
velocity of the Rayleigh wave. The denominator has no other roots for such
a fixation of 𝛿1 and 𝛿2. Going around the branch points in the corresponding
loops, choosing 𝛿1 and 𝛿2 on the corresponding sections of the loop, so that
the requirements (24) are satisfied. Also taking into account the residue in the
Rayleigh root, the solution for plane 𝑧 = 0 is obtained

𝐺

𝑃
𝑊𝐴𝐵(𝑥, 𝑦, 0;𝜔) = −

2𝑖𝜔2
√︁
𝑘2𝑅 − 𝜅−1

𝜅+1𝜔
2

𝐹 ′(𝑘𝑅)
𝐽𝐴,𝐵𝑘𝑅,1

(𝑥, 𝑦)+

+
2𝑖

𝜋
𝜔2

√︁
𝜅−1
𝜅+1

𝜔∫︁
0

𝑠
√︁

𝜅−1
𝜅+1𝜔

2 − 𝑠2

(2𝑠2 − 𝜔2)2 + 4𝑠2
√
𝜔2 − 𝑠2

√︁
𝜅−1
𝜅+1𝜔

2 − 𝑠2
𝐽𝐴,𝐵𝑠,1 (𝑥, 𝑦)𝑑𝑠+

+
8𝑖

𝜋
𝜔2

𝜔∫︁
√︁

𝜅−1
𝜅+1

𝜔

𝑠2
(︁
𝑠2 − 𝜅−1

𝜅+1𝜔
2
)︁√

𝜔2 − 𝑠2

(2𝑠2 − 𝜔2)4 + 16𝑠4
(︁
𝑠2 − 𝜅−1

𝜅+1𝜔
2
)︁

(𝜔2 − 𝑠2)
𝐽𝐴,𝐵𝑠,1 (𝑥, 𝑦)𝑑𝑠 (25)

Where 𝐽𝐴,𝐵𝑠,1 (𝑥, 𝑦) =

𝐴∫︁
0

𝐵∫︁
−𝐵

[︂
𝐽0

(︂
𝑠

√︁
(𝑥− 𝑎)2 + (𝑦 − 𝑏)2

)︂
−

−𝐽0
(︂
𝑠

√︁
(𝑥+ 𝑎)2 + (𝑦 − 𝑏)2

)︂]︂
𝑑𝑎 𝑑𝑏 (26)

𝐹 ′(𝑠) = 8𝑠
(︀
2𝑠2 − 𝜔2

)︀
− 4𝑠3

√
𝑠2 − 𝑤2√︁

𝑠2 − 𝜅−1
𝜅+1𝜔

2
− 12𝑠3 − 8𝑠𝜔√

𝑠2 − 𝜔2

𝑘𝑅 = 7−𝜅
6.84−1.12𝜅𝜔, where the approximate formula from [3] was used.
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If the formula (25) is being rewritten in terms of wavenumbers

𝑘2 =
𝜔

𝑐2
, 𝑘1 =

√︂
𝜅− 1

𝜅+ 1
𝜔 =

𝜔

𝑐1

𝑐1 is longitudinal wave velocity; 𝑐2 is shear wave velocity. The value of the
integrand in (21) 𝐹 (𝑠;𝜔)·𝑠

Δ𝑠𝜔
coincides with that one in Lamb’s problem [3]. The

difference with the work [8] is in the form of the function 𝐽𝐴,𝐵𝑠,1 (𝑥, 𝑦). Thus,
under the assumption (11) that the functions 𝑍𝛽(0, 𝑧) and 𝑍𝛽(0, 𝑧) are equal
to zero, the solution turned out to be practically identical to the solution of
the Lamb problem.

2.5. Displacement for large values vibration frequency

For large values of frequency 𝜔, using the expansion

(1 − 𝑥)
1
2 = 1 − 1

2
𝑥− 1

8
𝑥2 − 1

16
𝑥3 − 5

128
𝑥4 − . . . 𝑥2 ≤ 1

and based on formulas (21) – (23), a calculation formula for the displacement
was obtained in the form

𝐺

𝑃
𝑊𝐴𝐵(𝑥, 𝑦, 0;𝜔) = − 𝑖

𝜋

∞∫︁
0

𝐹 (𝑠;𝜔)𝐽𝐴,𝐵𝑠,1 (𝑥, 𝑦)𝑑𝑠, (27)

where 𝐹 (𝑠;𝜔) =

𝜔3𝑠− 1
2𝜅0𝜔𝑠

3 − 1
8𝜅

2
0
𝑠5

𝜔 − 1
16𝜅

3
0
𝑠7

𝜔3 − 5
128𝜅

4
0
𝑠9

𝜔5

4𝑠4
(︁√

𝜅0 − 𝜅
𝜅−1

)︁
+ 𝜔4√𝜅0 + 4𝑠2𝜔2

(︀√
𝜅0 − 1

)︀
− 4𝑠2

{︁
𝑠4

𝜔2𝜅1 + 𝑠6

𝜔4𝜅2 + 𝑠8

𝜔6𝜅3

}︁
𝜅0 =

𝜅+ 1

𝜅− 1
, 𝜅1 =

1

8
𝜅20 +

1

4
𝜅0, 𝜅2 =

1

16
𝜅20 +

1

16
𝜅0, 𝜅3 =

1

64
𝜅20 +

1

32
𝜅0

2.6. Transformation of the integral 𝐽𝐴,𝐵𝑠,1 (𝑥, 𝑦) from (26)

According to the scheme [8], consider the integral 𝐽𝐴,𝐵𝑠,1 (𝑥, 𝑦). Using the
integral representation for the Bessel function [15]

𝐽0(𝑠
√︀

(𝑥∓ 𝑎)2 + (𝑦 − 𝑏)2) =
2

𝜋

𝜋
2∫︁

0

cos [𝑠(𝑥∓ 𝑎) cos𝜓] · cos [𝑠(𝑦 − 𝑏) sin𝜓] 𝑑𝜓
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which should be substituted into formula (26). After changing the order of in-
tegration and calculating the integrals as repeated, the procedure was detailed
in [2], formula (26) was rewritten in the form

𝐽𝐴,𝐵𝑠,1 (𝑥, 𝑦) =
8𝐴𝐵

𝜋

𝜋
2∫︁

0

𝑆𝐴,𝐵𝑠 (𝜓) sin [𝑠𝑥 cos𝜓] · cos [𝑠𝑦 sin𝜓] 𝑑𝜓, (28)

where 𝑆𝐴,𝐵𝑠 (𝜓) =
sin [𝑠𝐵 sin𝜓]

𝑠𝐵 sin𝜓
· 1 − cos [𝑠𝐴 cos𝜓]

𝑠𝐴 cos𝜓

the function 𝑆𝐴,𝐵𝑠 (𝜓) is infinitely differentiable with respect to 𝜓 and also even,
therefore, the integration path can be taken equal to [−𝜋/2, 𝜋/2] . Subsequent
change of variables sin𝜓 = 𝜏 allows to rewrite (28) as

𝐽𝐴,𝐵𝑠,1 (𝑥, 𝑦) =
4𝐴𝐵

𝜋

1∫︁
−1

𝐹𝐴,𝐵𝑠,𝜏 (𝑥, 𝑦)
𝑑𝜏√

1 − 𝜏2
, (29)

where 𝐹𝐴,𝐵𝑠,𝜏 (𝑥, 𝑦) =
sin [𝑠𝐵𝜏 ]

𝑠𝐵𝜏
·
1 − cos

[︁
𝑠𝐴

√
1 − 𝜏2

]︁
𝑠𝐴

√
1 − 𝜏2

·sin
[︁
𝑠𝑥
√︀

1 − 𝜏2
]︁
·cos [𝑠𝑦𝜏 ]

The quadrature formula of the highest degree of accuracy [16] was applied to
the integral (29)

𝐽𝐴,𝐵𝑠,1 (𝑥, 𝑦) =
4𝐴𝐵

𝑁

𝑁∑︁
𝑖=1

𝐹𝐴,𝐵𝑠,𝜏𝑖 (𝑥, 𝑦) (30)

where 𝜏𝑖 = cos 2𝑖−1
2𝑁 𝜋, 𝑖 = 1, 𝑁 are the zeros of the Chebyshev polynomial of

the 1st kind.

𝐹𝐴,𝐵𝑠,𝜏𝑖 (𝑥, 𝑦) =
sin [𝑠𝐵𝜏𝑖]

𝑠𝐵𝜏𝑖
·

1 − cos
[︁
𝑠𝐴
√︁

1 − 𝜏2𝑖

]︁
𝑠𝐴
√︁

1 − 𝜏2𝑖

· sin

[︂
𝑠𝑥
√︁

1 − 𝜏2𝑖

]︂
· cos [𝑠𝑦𝜏𝑖]

(31)
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Substituting the expression into the displacement formula (25) and (27) the
final expression was constructed

𝐺

𝑃
𝑊𝐴𝐵(𝑥, 𝑦, 0;𝜔) =

4𝐴𝐵

𝑁

⎡⎣−2𝑖𝜔2
√︁
𝑘2𝑅 − 𝜅−1

𝜅+1𝜔
2

𝐹 ′(𝑘𝑅)

𝑁∑︁
𝑖=1

𝐹𝐴,𝐵𝑘𝑅,𝜏𝑖
(𝑥, 𝑦)+

+
2𝑖

𝜋
𝜔2

𝑁∑︁
𝑖=1

√︁
𝜅−1
𝜅+1

𝜔∫︁
0

𝑠
√︁

𝜅−1
𝜅+1𝜔

2 − 𝑠2

(2𝑠2 − 𝜔2)2 + 4𝑠2
√
𝜔2 − 𝑠2

√︁
𝜅−1
𝜅+1𝜔

2 − 𝑠2
𝐹𝐴,𝐵𝑠,𝜏𝑖 (𝑥, 𝑦)𝑑𝑠+

+
8𝑖

𝜋
𝜔2

𝑁∑︁
𝑖=1

𝜔∫︁
√︁

𝜅−1
𝜅+1

𝜔

𝑠2
(︁
𝑠2 − 𝜅−1

𝜅+1𝜔
2
)︁√

𝜔2 − 𝑠2

(2𝑠2 − 𝜔2)4 + 16𝑠4
(︁
𝑠2 − 𝜅−1

𝜅+1𝜔
2
)︁

(𝜔2 − 𝑠2)
𝐹𝐴,𝐵𝑠,𝜏𝑖 (𝑥, 𝑦)𝑑𝑠

⎤⎥⎥⎥⎦
(32)

where 𝐹 ′(𝑠) is defined in (26) and 𝐹𝐴,𝐵𝑠,𝜏𝑖 (𝑥, 𝑦) – in (31). For large values of
frequency 𝜔 the formula takes the form

𝐺

𝑃
𝑊𝐴𝐵(𝑥, 𝑦, 0;𝜔) = −4𝐴𝐵𝑖

𝑁𝜋

𝑁∑︁
𝑖=1

∞∫︁
0

𝐹 (𝑠;𝜔)𝐹𝐴,𝐵𝑠,𝜏𝑖 (𝑥, 𝑦)𝑑𝑠, (33)

where the function 𝐹 (𝑠;𝜔) is defined in (27)
Thus, the formula has been simplified to the calculation of single integrals

of continuous functions, which is not difficult if oscillations in the near zone
are of interest.

2.7. Expressions for far field displacements

The calculation of integrals in (32), (33) for large values of 𝑥 and 𝑦 is
difficult due to the presence of an oscillating function in the integrand. To
eliminate this difficulty for large values of 𝑟 =

√︀
𝑥2 + 𝑦2, the asymptotic ex-

pressions for analyzing the far field is advisable to obtained. In the integral
(28) the change of variables 𝑥 = 𝑟 cos𝜑, 𝑦 = 𝑟 sin𝜑, 𝜆 = 𝑡𝑟 was done

𝐽𝐴,𝐵𝑠,1 (𝑟 cos𝜑, 𝑟 sin𝜑) =
4𝐴𝐵

𝜋
Im

⎧⎪⎨⎪⎩
𝜋
2∫︁

0

𝑆𝐴,𝐵𝑠 (𝜓)𝑒𝑖𝜆 cos(𝜑−𝜓)𝑑𝜓+
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+

𝜋
2∫︁

0

𝑆𝐴,𝐵𝑠 (𝜓)𝑒𝑖𝜆 cos(𝜑+𝜓)𝑑𝜓

⎫⎪⎬⎪⎭ 0 ≤ 𝜑 ≤ 𝜋

2
(34)

The stationary phase method was used for the analysis of asymptotics [8; 17],
where the role of the function for the analysis of asymptotics, 𝑓(𝜓) is played
by cos(𝜑∓𝜓), and the role function 𝜑(𝜓) is an infinitely differentiable function
𝑆𝐴,𝐵𝑠 (𝜓). The first integral has a stationary point and the second has not,
therefore, its contribution to the asymptotics of (34) can be neglected. The
first integral in (34) can be represented as the sum

𝐽𝐴,𝐵𝑠,1 (𝑟 cos𝜑, 𝑟 sin𝜑) =
4𝐴𝐵

𝜋
Im

⎛⎜⎝ 𝜑∫︁
0

+

𝜋
2∫︁

𝜑

⎞⎟⎠𝑆𝐴,𝐵𝑠 (𝜓)𝑒𝑖𝜆 cos(𝜑−𝜓)𝑑𝜓.

where in the first integral the stationary point is at the end of the integration
path 𝑓 ′(𝜓) = 𝜕

𝜕𝜓 cos(𝜓 − 𝜑) = 0 for 𝜓 = 𝜑 and 𝑓 ′′(𝜓) = −1 < 0, a in the
second integral — at the beginning of the integration path. After application
of theorems 2 and 3 [17], formula (34) was rewritten

𝐽𝐴,𝐵𝑠,1 (𝑟 cos𝜑, 𝑟 sin𝜑) =
2𝐴𝐵√
𝜋𝑠𝑟

[sin 𝑠𝑟 − cos 𝑠𝑟] · 𝑆𝐴,𝐵𝑠 (𝜑) +𝑂

(︂
1

𝑟

)︂
0 ≤ 𝜑 ≤ 𝜋

2
(35)

𝑆𝐴,𝐵𝑠 (𝜑) =
sin [𝑠𝐵 sin𝜓]

𝑠𝐵 sin𝜓
· 1 − cos [𝑠𝐴 cos𝜓]

𝑠𝐴 cos𝜓

Substitution of (35) into formulas (25) and (27) makes it possible to determine
the displacement𝑊 (𝑥, 𝑦, 0;𝜔) in the far field 𝑟 → ∞. As in the work [3; 8] only
the Rayleigh term makes the main contribution to the asymptotic behavior of
the displacement in the far field, the highest values are achieved with the angles
𝜑 = 0 and 𝜑 = 𝜋

2

𝐽𝐴,𝐵𝑘𝑅,1
(𝑟 cos𝜑, 𝑟 sin𝜑)

⃒⃒⃒
𝜑=0;𝜑=𝜋

2

=

√︂
𝜋

2𝑘𝑅
(sin 𝑘𝑅𝑟 − cos 𝑘𝑅𝑟)×

×
[︂
−cos 𝑘𝑅𝐴

𝑘𝑅𝐴
;

sin 𝑘𝑅𝐵

𝑘𝑅𝐵

]︂
+𝑂

(︂
1

𝑟

)︂
(36)

2.8. Discussion and numerical results

For numerical implementation, the displacement should be multiplied by
𝑒𝑖𝜔𝑡 and the real or imaginary part should be separated. The graphs are given
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for the function 𝐺
𝜌 Im𝑊𝐴𝐵(𝑥, 𝑦, 0;𝜔) from (32) for values of Poisson’s ratio

𝜇 = 1
3 and 𝜇 = 1

4 for frequencies 𝜔 = 0.3; 1; 3. For large values of frequencies
formula (33) was used. Three forms of the load distribution section across the
face 𝑧 = 0 were considered

1. 𝐵 = 𝐴/2 - the load is distributed over a square;

2. 𝐵 = 𝐴 - the load is distributed over a rectangle extended along the 𝑂𝑦
axis;

3. 𝐵 = 𝐴/4 - the load is distributed over a rectangle extended along the
𝑂𝑥 axis.

To analyze the far-field 𝑟 → ∞, the asymptotic equalities (35), (36) were used,
substituted into the expressions for the displacement (25), (27)

Сomparing the graphs of vertical displacements for the same frequency
𝜔 = 0.3 and Poisson’s ratio 𝜇 = 1/3 under different sections of the load
distribution (Fig. 1, Fig. 2, Fig. 3), it can be seen that the maximum absolute
values equal to 2.5 achieved with the shape of the section 𝐵 = 𝐴, which
corresponds to a rectangle elongated along the y-axis. At the same time, the
displacement has a maximum amplitude which is approximately 2 units. In the
case when the load is distributed over a rectangle elongated along the x-axis,
the displacement has a minimum amplitude 0.6 аnd its maximum displacement
is about 0.7 units.

In the case when the load is distributed over the square 𝐵 = 𝐴/2, with
an increase in the vibration frequency (Fig. 1, Fig. 4, Fig. 7), the amplitude
of displacement grows. In addition, in the case when the oscillation frequency
is equal to 3, negative displacements are observed, which means the lifting of
the face of the quarter space. Also growing of the amplitude with increasing
frequency can be seen from Fig. 2 and Fig. 5, which corresponds to the case
𝐵 = 𝐴, where the amplitude increased from 2 units (𝜔 = 0.3) to 4 units
(𝜔 = 1). There is also the effect of raising the edge of a quarter space due to
the presence of negative amplitudes’ zones (Fig. 5).

Comparing the value of vertical displacements for different values of Pois-
son’s ratio (Fig. 5, 6), it can be seen that the behavior of the graphs is similar,
but for values of 𝜇 = 1/3 the amplitude of oscillations is greater.
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Figure 1: 𝐵 = 𝐴/2, 𝜔 = 0.3, 𝜇 =

1/3

Figure 2: 𝐵 = 𝐴, 𝜔 = 0.3, 𝜇 =

1/3

Figure 3: 𝐵 = 𝐴/4, 𝜔 = 0.3, 𝜇 =

1/3

Figure 4: 𝐵 = 𝐴/2, 𝜔 = 1, 𝜇 =

1/3

The vertical displacements’ graphs in the remote zone of the load applica-
tion area, depending on the vibration frequency with Poisson’s ratio equal to
1/3 and load section 𝐵 = 𝐴, represented in the Figure 8. As the distance from
the load distribution section increases, the oscillations decay. Similar to the
results for the near load zone, the maximum displacements occur in the case
of the load section’ shape B = A. The amplitude is greater for large values
of vibration frequencies. With a decrease in the frequency of oscillations, the
amplitudes are practically equal to zero.
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Figure 5: 𝐵 = 𝐴, 𝜔 = 1, 𝜇 = 1/3 Figure 6: 𝐵 = 𝐴, 𝜔 = 1, 𝜇 = 1/4

Figure 7: 𝐵 = 𝐴/2, 𝜔 = 3, 𝜇 =

1/3

Figure 8: 𝐵 = 𝐴, 𝜇 = 1/3.

3. Conclusion

The dynamical problem’s solution of the elasticity for the quarter space was
derived, when one the faces is rigidly fixed and another is under the influence
of the normal dynamic compressive load, applied at the initial moment of time
and distributed across a rectangular section. Application of the integral trans-
form method directly to the movement equations reduced the initial problem
to the one-dimensional vector problem. The last one was solved exactly using
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the matrix differential calculus. The proposed approach makes it possible to
obtain an exact solution of the problem in the transform’s space. The case of
steady state oscillations was investigated and vertical amplitude was analyzed
in near loading and remote zone, for which asymptotic formulas were derived.

At the same time, it is also possible to construct and study the normal
stress arising in a quarter space and compare the amplitudes of all three dis-
placements. Using the proposed approach, the similar dynamical problem for
the elastic semi-infinite layer, when different boundary conditions are set on
the bottom face is under consideration.

Фесенко Г. О., Бондаренко К. С.
Динамiчна задача про дiю зосередженого навантаження на пружний чверть
простiр

Резюме

Побудовано хвильове поле пружного чверть простору, коли одну границю жорстко за-
крiплено, а на iншiй по прямокутнiй дiлянцi дiє нестацiонарне нормальне стискаюче
навантаження в початковий момент часу. Iнтегральнi перетворення Лапласа та Фур’є
застосовано послiдовно до рiвнянь руху та до граничних умов, на вiдмiну вiд тради-
цiйних пiдходiв, коли iнтегральнi перетворення застосовуються до подання розв’язкiв
через гармонiчнi функцiї. Це приводить до одновимiрної векторної однорiдної крайової
задачi вiдносно невiдомих трансформант перемiщень. Задачу розв’язано за допомогою
матричного диференцiального числення. Поле вихiдних перемiщень знайдено пiсля за-
стосування обернених iнтегральних перетворень. Для випадку стацiонарних коливань
вказано спосiб обчислення у розв’язку квадратур в ближнiй зонi навантаження. Для
аналiзу коливань у вiддаленiй зонi побудовано асимптотичнi формули. Дослiджено ам-
плiтуду вертикальних коливань в залежностi вiд форми дiлянки навантаження, власних
частот коливань та матерiалу середовища.
Ключовi слова: точний розв’язок, пружний чвертьпростiр, динамiчне навантажен-
ня, iнтегральнi перетворення.

Фесенко А. А., Бондаренко К. С.
Динамическая задача о действии сосредоточенной нагрузки на упругое чет-
верть пространства

Резюме

Построено волновое поле упругого четверть пространства, когда одна грань жестко за-
креплена, а на другой по прямоугольному участку действует нестационарная нормаль-
ная сжимающая нагрузка в начальный момент времени. Интегральные преобразования
Лапласа и Фурье применены последовательно к уравнениям движения и граничным
условиям, в отличие от традиционных подходов, когда интегральные преобразования
применяются к представлениям решений через гармонические функции. Это приводит
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к одномерной векторной однородной краевой задаче относительно неизвестных транс-
формант перемещений. Задача решена с помощью матричного дифференциального ис-
числения. Поле исходных перемещений найдено после применения обратных интеграль-
ных преобразований. Для случая стационарных колебаний указан способ вычисления
в решении квадратур в ближней зоне нагружения. Для анализа колебаний в отдален-
ной зоне построены асимптотические формулы. Исследована амплитуда вертикальных
колебаний в зависимости от формы участка нагрузки, собственных частот колебаний и
материала среды.
Ключевые слова: точное решение, упругое чтвертьпространство, динамическая на-
грузка, интегральные преобразования.
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