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1. Introduction

The integral transforms are widely used in many engineering and mathe-
matical problems. The methods for inversion of Laplace transform are divided
into two main groups: analytical and numerical ones. The numerical inversion
of Laplace transform causes some doubts for its validity since, as it is well
known [1], the Laplace transform inversion problem is not correct one. So, it is
important to have new approaches for analytical inversion of Laplace transform
despite many developed methods in this area.

The original function can be recovered by the Bromwich contour integral

𝑓(𝑡) = 1
2𝜋𝑖

𝛾+𝑖∞∫︀
𝛾−𝑖∞

𝐹 (𝑠)𝑒𝑠𝑡𝑑𝑠 if 𝑓 is continuous at 𝑡 [2]. Since the function 𝑒𝑠𝑡 is

oscillatory on the contour (𝛾− 𝑖∞, 𝛾+ 𝑖∞) the approximations of this integral
need to know an abscissa of convergence 𝛾. The relations that allow direct
calculation of the original function from its transform dispensing contour inte-
gration were derived by the change of variables in [3]. The obtained integrals
are usually calculated numerically.
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The original function’s behavior at the points 𝑡 = 0 and 𝑡→ ∞ can be found
by the initial-value and terminal-value theorems from the transform’s function
behavior at the points 𝑠→ ∞ and 𝑠 = 0 respectively if it is known that original
functions exist [4], [2]. The asymptotic expansions near some point 𝛼0 can be

used 𝐹 (𝑠) =
∞∑︀
𝜈=0

𝑐𝜈(𝑠− 𝛼0)
𝜆𝜈 if the series is absolutely convergent [5]. In this

case the asymptotic behavior of the original function at the point 𝑡 → ∞ can

be derived by the series 𝑓(𝑡) = 𝑒𝛼0𝑡
∞∑︀
𝜈=0

𝑐𝜈
Γ(−𝜆𝜈)

𝑡−𝜆𝜈−1.

For some functions the Laplace transform inversion problem can be reduced
to the problem of solving the Volterra integral equation of the first (when
𝑥(𝑠) = 𝑓(𝑠)/𝑘(𝑠)) or second (when 𝑥(𝑠) = 𝑓(𝑠)/(1 + 𝑘(𝑠))) kind [12]. These
equations are usually solved numerically. The inversion of the Laplace trans-
form in UMD-spaces for resolvent families associated to an integral Volterra
equation of convolution type was analyzed in [6].

The method for the mutual inversion of the Fourier-Laplace transforms
was proposed by L.I. Slepyan in [7], [8]. In some cases it allows to derive the
original function without usual inversion of Fourier and Laplace transforms. In
more complex cases it allows to simplify the Laplace transform, which should
be inverted.

The function that is presented by 𝐹 (𝑠) = 𝑝(𝑠)
𝑞(𝑠) and satisfy some conditions

can be inverted with the help of residues by the second expansion theorem
[9], [4]. But the analytical finding of all poles of the transform function in
many cases is impossible. If 𝑞(𝑠) has distinct zeros 𝛼𝑘, 𝑘 = 1, 𝑛, then Heav-

iside’s expansion formula can be used 𝑓(𝑡) =
𝑛∑︀

𝑘=1

𝑝(𝛼𝑘)
𝑞′(𝛼𝑘)

𝑒𝛼𝑘𝑡 [10]. The inverse

formula 𝐿−1[𝐹 (1/𝑠)] = 𝛿(𝑡)
∞∫︀
0

𝑓(𝑢)𝑑𝑢 − 1√
𝑡

∞∫︀
0

√
𝑢𝑓(𝑢)𝐽1(2

√
𝑢𝑡)𝑑𝑢 was proven

under some conditions in [11].
The first expansion theorem deals with the functions that can be expanded

into series 𝐹 (𝑠) =
∞∑︀
𝑛=0

𝑎𝑛
𝑠𝑛+1 . The original function 𝑓(𝑡) can be derived in this

case as 𝑓(𝑡) =
∞∑︀
𝑛=0

𝑎𝑛
𝑛! 𝑡

𝑛 [12], [5]. Many methods were presented in [5]. In

particular, the approach dealing with the functions that can be expanded into

series 𝐹 (𝑠) =
∞∑︀
𝑛=0

𝑎𝑛
𝑠𝜆𝑛

or 𝐹 (𝑠) =
∞∑︀
𝑛=0

𝐹𝑛(𝑠) under some conditions was proposed

by G. Doetsch in [5]. But there were no examples of dealing with generalized
functions.
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As it is seen, the problem of analytical inversion of Laplace transform is
relevant and extremely important. The method, proposed in the article, can
be used for some dynamic problems of elasticity, for example it can be applied
for the non-stationary statement of the elastic semi-strip as development of the
methodic proposed in [13].

2. Theoretical results

The present article is dedicated to the analytical inversion of Laplace trans-
form of the following form

𝐹

(︃
𝑐0 +

𝑁∑︁
𝑖=1

𝑐𝑖𝑒
−𝑠𝐴𝑖

)︃
(1)

Here 𝐴𝑖 > 0, 𝑖 = 1, 𝑁 , 𝑐𝑖, 𝑖 = 1, 𝑁, 𝑐0 ̸= 0 are real constants or functions,
which do not depend on parameter of Laplace transform 𝑠, 𝑁 ≥ 1 is natural
number, 𝐹 is a known function.

2.1. Case 1

The inversion of (1) depend on the correspondences between 𝐴𝑖, 𝑖 = 1, 𝑁 .
First consider the case when 𝐴𝑖 = 𝑛𝑖𝐴𝑞, 𝑖 = 1, 𝑁 , 𝑛𝑖, 𝑖 = 1, 𝑁 are natural
numbers, for some fixed number 1 ≤ 𝑞 ≤ 𝑁 . Then the transform (1) can be
rewritten in the following form

𝐹

(︃
𝑐0 +

𝑁∑︁
𝑖=1

𝑐𝑖𝑒
−𝑠𝑛𝑖𝐴𝑞

)︃
(2)

Denote the function of the complex variable 𝑠 𝑒−𝑠𝐴𝑞 as 𝑧. Since ℜ𝑠 > 0,
then |𝑒−𝑠𝐴𝑞 | = |𝑧| < 1. The expression (2) can be rewritten as

𝑓(𝑧) = 𝐹

(︃
𝑐0 +

𝑁∑︁
𝑘=1

𝑐𝑘𝑧
𝑛𝑘

)︃
(3)

It is supposed that the function (3) satisfies Cauchy-Riemann conditions
in some domain |𝑧| < 𝜗 < 1.

For example, if 𝐹
(︂
𝑐0 +

𝑁∑︀
𝑘=1

𝑐𝑘𝑧
𝑛𝑘

)︂
= 1

𝑐0+
𝑁∑︀

𝑘=1
𝑐𝑘𝑧

𝑛𝑘

, than this function

has max
1≤𝑘≤𝑁

𝑛𝑘 = 𝜂 singular points 𝑧𝑖 = 𝛼𝑖, 𝑖 = 1, 𝜂. So, the points 𝑠𝑖 =



66 Zhuravlova Z. Yu.

− 1
𝐴𝑞

ln𝛼𝑖, 𝑖 = 1, 𝜂 are singular points for the function (2). Since 𝛾 in the for-

mula of the inverse Laplace transform 1
2𝜋𝑖

𝛾+𝑖∞∫︀
𝛾−𝑖∞

𝑓(𝑠)𝑒𝑠𝑡𝑑𝑡 is the abscissa in the

semi-plane of the Laplace integral’s absolute convergence [5], so ℜ𝑠 > 𝜈 > 0,

where 𝜈 = max

{︂
max
1≤𝑖≤𝜈

ℜ
{︁
− 1

𝐴𝑞
ln𝛼𝑖

}︁
, 0

}︂
. Thus, when ℜ𝑠 > 𝜈 > 0 it is ful-

filled that |𝑒−𝑠𝐴𝑞 | = |𝑧| < 𝜗 < 1, where 𝜗 = 𝑒−𝜈𝐴𝑞 . So, the function (3) in the
domain |𝑧| < 𝜗 < 1 does not have any singular points. By the the proved in
[14] lemma this function satisfies Cauchy-Riemann conditions in the domain
|𝑧| < 𝜗 < 1. Some other examples of the function (3) are given in Appendix
A.

Theorem 1. If the function (3) satisfies Cauchy-Riemann conditions in some

domain |𝑧| < 𝜗 < 1, then 𝐿−1

[︂
𝐹

(︂
𝑐0 +

𝑁∑︀
𝑖=1

𝑐𝑖𝑒
−𝑠𝑛𝑖𝐴𝑞

)︂]︂
=

∞∑︀
𝑘=0

𝑓 (𝑘)(0)
𝑘! 𝛿(𝑡−𝑘𝐴𝑞),

where the function 𝑓(𝑧) has the form (3).

Proof. I Proof of the correctness of the function’s (3) expansion into
Taylor series

By the theorem’s statement the function (3) satisfies Cauchy-Riemann con-
ditions and, therefore, it is holomorphic and regular [15] for all |𝑧| < 𝜗 < 1.

According to the theorems [15] the regular function (3) in the circle 𝐾 :

|𝑧| < 𝜗 can be presented by Taylor series

𝑓(𝑧) =
∞∑︁
𝑘=0

𝑓 (𝑘)(0)

𝑘!
𝑧𝑘 (4)

Power series inside the circle of convergence can be term-by-term integrated
and differentiated any number of times, moreover the radius of convergence of
the derived series is equal to the radius of convergence of the original series
[16].

II Application of the inverse Laplace transform to the series (4)

Thus, the series (4) has the radius of convergence 𝑅 = 𝜗, within which this
series can be term-by-term integrated. That is the following is true:

𝐿−1

[︃
𝐹

(︃
𝑐0 +

𝑁∑︁
𝑖=1

𝑐𝑖𝑒
−𝑠𝑛𝑖𝐴𝑞

)︃]︃
= 𝐿−1

[︃ ∞∑︁
𝑘=0

𝑓 (𝑘)(0)

𝑘!
𝑧𝑘

]︃
=

∞∑︁
𝑘=0

𝑓 (𝑘)(0)

𝑘!
𝛿(𝑡−𝑘𝐴𝑞)
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Let’s prove that the derived series

∞∑︁
𝑘=0

𝑓 (𝑘)(0)

𝑘!
𝛿(𝑡− 𝑘𝐴𝑞) (5)

converges in the sense that all series(︃ ∞∑︁
𝑘=0

𝑓 (𝑘)(0)

𝑘!
𝛿(𝑡− 𝑘𝐴𝑞), 𝜙(𝑡)

)︃
=

∞∑︁
𝑘=0

𝑓 (𝑘)(0)

𝑘!
𝜙(𝑘𝐴𝑞) (6)

absolutely converge for all functions 𝜙(𝑡) ∈ 𝑆𝜈 ∪𝐾0, where 𝑆𝜈 ⊂ 𝑆, 𝑆 is the
main space containing all infinitely differentiable functions which when |𝑡| → ∞
tends to zero with all their derivatives of any order faster than any power 1/|𝑡|
[17], 𝑆𝜈 contains such infinitely differentiable functions that when 𝑡 → +∞
tends to zero with all their derivatives of any order faster than 𝑒−𝜈𝑡, 𝐾0 is
the main space containing all continuous functions that are zero outside some
bounded domain [17]. Obviously, if the absolute convergence of series (6) is
proved for all functions from the spaces 𝑆𝜈 and 𝐾0, then it will also take place
for the functions from the main spaces 𝐾𝑚,𝑚 > 0,𝐾, since 𝐾 ⊂ 𝐾𝑚 ⊆ 𝐾0

[17].
Let’s prove the convergence of the following series

∞∑︁
𝑘=0

⃒⃒
𝑓 (𝑘)(0)

⃒⃒
𝑘!

|𝜙(𝑘𝐴𝑞)| (7)

III Proof of the series’ (7) convergence for 𝜙(𝑡) ∈ 𝑆𝜈

According to [18] if the limit lim
𝑛→∞

𝑎𝑛
𝑏𝑛

= 𝐾 <∞ exists then the convergence

of the series
∞∑︀
𝑛=1

𝑏𝑛 with positive terms implies the convergence of the series
∞∑︀
𝑛=1

𝑎𝑛 with positive terms.

Let’s make a comparison with the series

∞∑︁
𝑘=0

⃒⃒
𝑓 (𝑘)(0)

⃒⃒
𝑘!

𝑧𝑘0 , (8)

which is the series with positive terms. By Abel’s theorem [16], the convergence
of the series (4) in the circle 𝐾 : |𝑧| < 𝜗 implies the convergence of the series
(8) when 0 < 𝑧0 < 𝜗. Let’s set 𝑧0 = 𝑒−𝜈𝐴𝑞 − 𝜀0 for some small fixed 𝜀0 > 0.
Since 𝜗 = 𝑒−𝜈𝐴𝑞 and 𝜀0 > 0 is small, then 0 < 𝑧0 < 𝜗.
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Let’s prove that

lim
𝑘→∞

|𝑓 (𝑘)(0)|
𝑘! |𝜙(𝑘𝐴𝑞)|
|𝑓 (𝑘)(0)|

𝑘! 𝑧𝑘0

= lim
𝑘→∞

|𝜙(𝑘𝐴𝑞)|
𝑧𝑘0

<∞ (9)

for the functions 𝜙(𝑡) ∈ 𝑆𝜈 .
Let’s rewrite the limit (9) in the following form lim

𝑘→∞
|𝜙(𝑘𝐴𝑞)|

(𝑒−𝜈𝐴𝑞−𝜀0)
𝑘 or, the

same, lim
𝑘→∞

|𝜙(𝑘𝐴𝑞)|

𝑒−𝑘𝜈𝐴𝑞
(︁
1− 𝜀0

𝑒−𝜈𝐴𝑞

)︁𝑘 .

Accordingly to [19] (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥, 𝑥 > −1, 𝑛 > 1. Note that this
inequality also holds when 𝑛 = 0 and 𝑛 = 1. Thus,

0 ≤ |𝜙(𝑘𝐴𝑞)|

𝑒−𝑘𝜈𝐴𝑞

(︁
1− 𝜀0

𝑒−𝜈𝐴𝑞

)︁𝑘 ≤ |𝜙(𝑘𝐴𝑞)|

𝑒−𝑘𝜈𝐴𝑞

(︁
1− 𝑘 𝜀0

𝑒−𝜈𝐴𝑞

)︁ (10)

since from 𝑧0 = 𝑒−𝜈𝐴𝑞 − 𝜀0 > 0 it follows that 𝜀0
𝑒−𝜈𝐴𝑞

< 1 and − 𝜀0
𝑒−𝜈𝐴𝑞

> −1.
Due to the fact that 𝜙(𝑡) ∈ 𝑆𝜈 , 𝜙(𝑘𝐴𝑞) decreases on+∞ faster than 𝑒−𝜈𝑘𝐴𝑞 .

So, lim
𝑘→∞

|𝜙(𝑘𝐴𝑞)|
𝑒−𝑘𝜈𝐴𝑞

= 0. And lim
𝑘→∞

(︁
1− 𝑘 𝜀0

𝑒−𝜈𝐴𝑞

)︁
= ∞. Then by the theorem of

the limit of the quotient [20] it is derived that

lim
𝑘→∞

|𝜙(𝑘𝐴𝑞)|

𝑒−𝑘𝜈𝐴𝑞

(︁
1− 𝑘 𝜀0

𝑒−𝜈𝐴𝑞

)︁ = 0 (11)

Thus from (10) with regard to (11) by the property of comparison of limits
[20] it is derived that lim

𝑘→∞
|𝜙(𝑘𝐴𝑞)|

𝑒−𝑘𝜈𝐴𝑞
(︁
1− 𝜀0

𝑒−𝜈𝐴𝑞

)︁𝑘 = 0 <∞. That is (9) holds. Then

by the theorem the series (7) converges for all functions 𝜙(𝑡) ∈ 𝑆𝜈 .
IV Proof of the series’ (7) convergence for 𝜙(𝑡) ∈ 𝐾0

Note that for the functions 𝜙(𝑡) ∈ 𝐾0, since they are equal to zero outside
some bounded domain, there exists a number 𝑁 such that |𝜙(𝑘𝐴𝑞)| = 0 for
𝑘 > 𝑁 . In this case, the convergence of the series (7) can be proved by
another theorem, according to which if, at least starting from some place (say,
for 𝑛 > 𝑁), the inequality 𝑎𝑛 ≤ 𝑏𝑛 holds, then the convergence of the series
∞∑︀
𝑛=1

𝑏𝑛 with positive terms implies the convergence of the series
∞∑︀
𝑛=1

𝑎𝑛 with

positive terms [18]. Then for 𝑘 > 𝑁 the following correspondence takes place
0 = |𝑓 (𝑘)(0)|

𝑘! |𝜙(𝑘𝐴𝑞)| ≤ |𝑓 (𝑘)(0)|
𝑘! 𝑧𝑘0 . Hence the series (7) is convergent for all

functions 𝜙(𝑡) ∈ 𝐾0. Thus, it is proved that the series (6) converges absolutely
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for all functions 𝜙(𝑡) ∈ 𝑆𝜈 ∪ 𝐾0, and the series (5) converges in the sense
indicated earlier.

The proved convergence of the series (5) implies the correctness of the
term-by-term application of the series (5) to any function from the spaces
𝐾𝑚,𝑚 ≥ 0,𝐾, 𝑆𝜈 .

V Proof that the resulting series (5) is the original for the Laplace
transform (2)

Now let’s prove that the resulting series (5) is the original for the Laplace
transform (2). For this, the Laplace transform is applied to the series (5)

𝐿

[︃ ∞∑︁
𝑘=0

𝑓 (𝑘)(0)

𝑘!
𝛿(𝑡− 𝑘𝐴𝑞)

]︃
=

∞∑︁
𝑘=0

𝑓 (𝑘)(0)

𝑘!
𝑒−𝑠𝑘𝐴𝑞

Let’s prove that the series
∞∑︁
𝑘=0

𝑓 (𝑘)(0)

𝑘!
𝑒−𝑠𝑘𝐴𝑞 (12)

converges to the known transform (2).
The series (12), taking into account the change of variables 𝑧 = 𝑒−𝑠𝐴𝑞 , can

be written as (4), that is, it is an expansion of the function 𝑓(𝑧) (3) in Taylor
series. According to the theorems [15] and the proved regularity of the function
𝑓(𝑧), it is derived that the series (12) converges to the function 𝑓(𝑧) (3) with
the radius of convergence 𝑅 = 𝜗, which corresponds to the entire range of the
variable |𝑧| < 𝜗.

The statement of the theorem is proved.

2.2. Case 2

Let’s consider the most general case when 𝐴𝑖 =
𝑚∑︀
𝑗=1

𝑛𝑖𝑗𝐴𝑞𝑗 , 𝑖 = 1, 𝑁 , 𝑛𝑖𝑗 , 𝑖 =

1, 𝑁, 𝑗 = 1,𝑚,𝑚 > 1 are natural numbers, for some fixed numbers 1 ≤ 𝑞𝑗 ≤
𝑁 , moreover 𝐴𝑞𝑗 ̸= 𝐴𝑞𝑘 , 𝑗 ̸= 𝑘, 𝑗, 𝑘 = 1,𝑚. Then the transform (1) can be
rewritten as

𝐹

⎛⎝𝑐0 + 𝑁∑︁
𝑖=1

𝑐𝑖𝑒
−𝑠

𝑚∑︀
𝑗=1

𝑛𝑖𝑗𝐴𝑞𝑗

⎞⎠ (13)

Denote the functions of the complex variable 𝑠 as 𝑧𝑗 = 𝑒−𝑠𝐴𝑞𝑗 , 𝑗 = 1,𝑚.
Since ℜ𝑠 > 0, then |𝑒−𝑠𝐴𝑞𝑗 | = |𝑧𝑗 | < 1. The expression (13) can be rewritten
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as

𝑓(𝑧1, . . . , 𝑧𝑚) = 𝐹

⎛⎝𝑐0 + 𝑁∑︁
𝑘=1

𝑐𝑘

𝑚∏︁
𝑗=1

𝑧
𝑛𝑘𝑗

𝑗

⎞⎠ (14)

It is supposed that the function (14) satisfies Cauchy-Riemann conditions
in some domain |𝑧𝑗 | < 𝜗𝑗 < 1, 𝑗 = 1,𝑚.

For example, if 𝐹

(︃
𝑐0 +

𝑁∑︀
𝑘=1

𝑐𝑘
𝑚∏︀
𝑗=1

𝑧
𝑛𝑘𝑗

𝑗

)︃
= 1

𝑐0+
𝑁∑︀

𝑘=1
𝑐𝑘

𝑚∏︀
𝑗=1

𝑧
𝑛𝑘𝑗
𝑗

, than this func-

tion has max
1≤𝑘≤𝑁

𝑛𝑘1 = 𝜂 singular points 𝑧𝑖1 = 𝛼𝑖(𝑧2, . . . , 𝑧𝑚), 𝑖 = 1, 𝜂. So,

the points 𝑠𝑖 = 𝜈𝑖, 𝑖 = 1, 𝜂 that can be found from the equation 𝑠𝑖 =

− 1
𝐴𝑞1

ln𝛼𝑖

(︀
𝑒−𝑠𝑖𝐴𝑞2 , . . . , 𝑒−𝑠𝑖𝐴𝑞𝑚

)︀
, 𝑖 = 1, 𝜂 are singular points for the function

(13). Since 𝛾 in the formula of the inverse Laplace transform 1
2𝜋𝑖

𝛾+𝑖∞∫︀
𝛾−𝑖∞

𝑓(𝑠)𝑒𝑠𝑡𝑑𝑠

is the abscissa in the semi-plane of the Laplace integral’s absolute convergence
[5], so ℜ𝑠 > 𝜈 > 0, where 𝜈 = max{max

1≤𝑖≤𝜂
𝜈𝑖, 0}. Thus, when ℜ𝑠 > 𝜈 > 0 it is

fulfilled that |𝑒−𝑠𝐴𝑞𝑗 | = |𝑧𝑗 | < 𝜗𝑗 < 1, 𝑗 = 1,𝑚, where 𝜗𝑗 = 𝑒−𝜈𝐴𝑞𝑗 , 𝑗 = 1,𝑚.
So, the function (14) in the domain |𝑧𝑗 | < 𝜗𝑗 < 1, 𝑗 = 1,𝑚 does not have any
singular points.

Theorem 2. If the function (3) satisfies Cauchy-Riemann conditions in some

domain |𝑧𝑗 | < 𝜗𝑗 < 1, 𝑗 = 1,𝑚, then 𝐿−1

⎡⎣𝐹
⎛⎝𝑐0 + 𝑁∑︀

𝑖=1
𝑐𝑖𝑒

−𝑠
𝑚∑︀

𝑗=1
𝑛𝑖𝑗𝐴𝑞𝑗

⎞⎠⎤⎦ =

∞∑︀
𝑘1,...,𝑘𝑚=0

1
𝑘1!...𝑘𝑚!

𝜕𝑘1+...+𝑘𝑚𝑓(0,...,0)

𝜕𝑧
𝑘1
1 ...𝜕𝑧𝑘𝑚𝑚

𝛿(𝑡−𝑘1𝐴𝑞1−...−𝑘𝑚𝐴𝑞𝑚), where 𝑓(𝑧1, . . . , 𝑧𝑚)

has the form (14).

Proof. I Proof of the correctness of the function’s (14) expansion into
Taylor series

First let’s prove that the function (14) is holomorphic. By the Hartogs-
Osgood theorem [21] a complex-valued function 𝑓(𝑥1, ..., 𝑥𝑚) is holomor-
phic on an open set 𝑈 ⊂ C𝑚 (here C is the complex space) if, for each
point 𝑎 = (𝑎1, ..., 𝑎𝑚) ∈ 𝑈 and each number 𝑗(1 ≤ 𝑗 ≤ 𝑚), the function
𝑓(𝑎1, ..., 𝑎𝑗−1, 𝑥𝑗 , 𝑎𝑗+1, ..., 𝑎𝑚) of one complex variable 𝑥𝑗 defined on the open
set {𝑥𝑗 ∈ C|(𝑎1, ..., 𝑎𝑗−1, 𝑥𝑗 , 𝑎𝑗+1, ..., 𝑎𝑚) ∈ 𝑈} ⊂ C𝑚, is holomorphic on the
indicated open sets of the space C.
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Let’s consider 𝑚 functions 𝑓(𝑎1, ..., 𝑎𝑗−1, 𝑧𝑗 , 𝑎𝑗+1, ..., 𝑎𝑚), 𝑗 = 1,𝑚, where
𝑎𝑗 ∈ C, 𝑗 = 1,𝑚 are arbitrary points for which it holds that |𝑎𝑗 | < 𝜗𝑗 < 1, 𝑗 =

1,𝑚, and prove that they all satisfy Cauchy-Riemann conditions.

𝑓(𝑎1, ..., 𝑎𝑗−1, 𝑧𝑗 , 𝑎𝑗+1, ..., 𝑎𝑚) = 𝐹

(︃
𝑑0 +

𝑁∑︁
𝑘=1

𝑑𝑘𝑧
𝑛𝑘𝑗

𝑗

)︃
, 𝑗 = 1,𝑚

where 𝑑0 = 𝑐0, 𝑑𝑘 = 𝑐𝑘
𝑚∏︀

𝑗=1,𝑖 ̸=𝑗

𝑎𝑛𝑘𝑖
𝑖 , 𝑘 = 1, 𝑁 .

Note that this function coincides with the function 𝑓(𝑧𝑗) = 𝐹

(︂
𝑐0 +

𝑁∑︀
𝑘=1

𝑐𝑘𝑧
𝑛𝑘
𝑗

)︂
(3) which by the theorem’s condition satisfies Cauchy-Riemann conditions in
the domain |𝑧𝑗 | < 𝜗𝑗 < 1, 𝑗 = 1,𝑚. So, according to [22] all functions
𝑓(𝑎1, ..., 𝑎𝑗−1, 𝑧𝑗 , 𝑎𝑗+1, ..., 𝑎𝑚), 𝑗 = 1,𝑚 are holomorphic when |𝑧𝑗 | < 𝜗𝑗 <

1, 𝑗 = 1,𝑚 for any points 𝑎𝑗 ∈ C, 𝑗 = 1,𝑚 such that |𝑎𝑗 | < 𝜗𝑗 < 1, 𝑗 = 1,𝑚.
Hence, by the Hartogs-Osgood theorem, the function (14) is holomorphic on
the open set 𝑃 =

{︀
(𝑧1, ..., 𝑧𝑚) ∈ 𝐶𝑚||𝑧𝑗 | < 𝜗𝑗 , 𝑗 = 1,𝑚

}︀
.

According to the theorem [21] the holomorphic in an open polycylinder
𝑃 =

{︀
(𝑧1, ..., 𝑧𝑚) ∈ C𝑚||𝑧𝑗 | < 𝜗𝑗 , 𝑗 = 1,𝑚

}︀
function (14) is uniquely expanded

into the absolutely convergent Taylor series

∞∑︁
𝑘1,...,𝑘𝑚=0

1

𝑘1!...𝑘𝑚!

𝜕𝑘1+...+𝑘𝑚𝑓(0, ..., 0)

𝜕𝑧𝑘11 ...𝜕𝑧
𝑘𝑚
𝑚

𝑚∏︁
𝑗=1

𝑧
𝑘𝑗
𝑗 (15)

II Application of the inverse Laplace transform to the series (15)
Accordingly, the following is true:

𝐿−1

⎡⎣𝐹
⎛⎝𝑐0 + 𝑁∑︀

𝑖=1
𝑐𝑖𝑒

−𝑠
𝑚∑︀

𝑗=1
𝑛𝑖𝑗𝐴𝑞𝑗

⎞⎠⎤⎦ =

= 𝐿−1

[︃
∞∑︀

𝑘1,...,𝑘𝑚=0

1
𝑘1!...𝑘𝑚!

𝜕𝑘1+...+𝑘𝑚𝑓(0,...,0)

𝜕𝑧
𝑘1
1 ...𝜕𝑧𝑘𝑚𝑚

𝑚∏︀
𝑗=1

𝑧
𝑘𝑗
𝑗

]︃
=

=
∞∑︀

𝑘1,...,𝑘𝑚=0

1
𝑘1!...𝑘𝑚!

𝜕𝑘1+...+𝑘𝑚𝑓(0,...,0)

𝜕𝑧
𝑘1
1 ...𝜕𝑧𝑘𝑚𝑚

𝛿(𝑡− 𝑘1𝐴𝑞1 − ...− 𝑘𝑚𝐴𝑞𝑚)

Let’s prove that the derived series

∞∑︁
𝑘1,...,𝑘𝑚=0

1

𝑘1!...𝑘𝑚!

𝜕𝑘1+...+𝑘𝑚𝑓(0, ..., 0)

𝜕𝑧𝑘11 ...𝜕𝑧
𝑘𝑚
𝑚

𝛿(𝑡− 𝑘1𝐴𝑞1 − ...− 𝑘𝑚𝐴𝑞𝑚) (16)
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converges in the sense that all series(︃
∞∑︀

𝑘1,...,𝑘𝑚=0

1
𝑘1!...𝑘𝑚!

𝜕𝑘1+...+𝑘𝑚𝑓(0,...,0)

𝜕𝑧
𝑘1
1 ...𝜕𝑧𝑘𝑚𝑚

𝛿(𝑡− 𝑘1𝐴𝑞1 − ...− 𝑘𝑚𝐴𝑞𝑚), 𝜙(𝑡)

)︃
=

=
∞∑︀

𝑘1,...,𝑘𝑚=0

1
𝑘1!...𝑘𝑚!

𝜕𝑘1+...+𝑘𝑚𝑓(0,...,0)

𝜕𝑧
𝑘1
1 ...𝜕𝑧𝑘𝑚𝑚

𝜙(𝑘1𝐴𝑞1 + ...+ 𝑘𝑚𝐴𝑞𝑚)

(17)

absolutely converge for all functions 𝜙(𝑡) ∈ 𝑆𝜈 ∪𝐾0, where 𝑆𝜈 and 𝐾0 are the
spaces described in the theorem 1.

Let’s prove the convergence of the following series

∞∑︁
𝑘1,...,𝑘𝑚=0

1

𝑘1!...𝑘𝑚!

⃒⃒⃒⃒
⃒𝜕𝑘1+...+𝑘𝑚𝑓(0, ..., 0)

𝜕𝑧𝑘11 ...𝜕𝑧
𝑘𝑚
𝑚

⃒⃒⃒⃒
⃒ |𝜙(𝑘1𝐴𝑞1 + ...+ 𝑘𝑚𝐴𝑞𝑚)| (18)

III Proof of the series’ (18) convergence for 𝜙(𝑡) ∈ 𝑆𝜈

III.1 Proof of the limit case theorem for multiple series’ convergence
According to [18] and the theorem [23] if for two multiple series
∞∑︀

𝑘1,...,𝑘𝑚=0

𝑢𝑘1,..,𝑘𝑚 and
∞∑︀

𝑘1,...,𝑘𝑚=0

𝑣𝑘1,..,𝑘𝑚 with positive terms there are such

𝑘01, .., 𝑘0𝑚 that when 𝑘𝑖 > 𝑘0𝑖, 𝑖 = 1,𝑚 the inequalities 𝑢𝑘1,..,𝑘𝑚 ≤ 𝑣𝑘1,..,𝑘𝑚 hold,

then the convergence of the multiple series
∞∑︀

𝑘1,...,𝑘𝑚=0

𝑣𝑘1,..,𝑘𝑚 implies the conver-

gence of the multiple series
∞∑︀

𝑘1,...,𝑘𝑚=0

𝑢𝑘1,..,𝑘𝑚 . Also the limit case of this theo-

rem can be formulated. If the multiple limit lim
𝑘1,...,𝑘𝑚→∞

𝑢𝑘1,..,𝑘𝑚

𝑣𝑘1,..,𝑘𝑚
= 𝐾 <∞, then

the convergence of the multiple series
∞∑︀

𝑘1,...,𝑘𝑚=0

𝑣𝑘1,..,𝑘𝑚 implies the convergence

of the multiple series
∞∑︀

𝑘1,...,𝑘𝑚=0

𝑢𝑘1,..,𝑘𝑚 . Indeed, if lim
𝑘1,...,𝑘𝑚→∞

𝑢𝑘1,..,𝑘𝑚

𝑣𝑘1,..,𝑘𝑚
= 𝐾 <∞

then by the definition of the multiple limit [20] the following holds: for each
𝜀 > 0, no matter how small it may be, there exists a number 𝑁 such that for all
𝑘𝑖 > 𝑁, 𝑖 = 1,𝑚: |𝑢𝑘1,..,𝑘𝑚

𝑣𝑘1,..,𝑘𝑚
−𝐾| < 𝜀 or 𝑢𝑘1,..,𝑘𝑚

𝑣𝑘1,..,𝑘𝑚
< 𝐾 + 𝜀. That is the following

estimation holds 𝑢𝑘1,..,𝑘𝑚 < (𝐾 + 𝜀)𝑣𝑘1,..,𝑘𝑚 . By the theorem of the multiplica-

tion of the multiple series by the digit [23], the series
∞∑︀

𝑘1,...,𝑘𝑚=0

(𝐾 + 𝜀)𝑣𝑘1,..,𝑘𝑚

converges. Then by the theorem indicated earlier the series
∞∑︀

𝑘1,...,𝑘𝑚=0

𝑢𝑘1,..,𝑘𝑚

converges.
III.2 Comparison with the convergent series
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Let’s make a comparison with the series

∞∑︁
𝑘1,...,𝑘𝑚=0

1

𝑘1!...𝑘𝑚!

⃒⃒⃒⃒
⃒𝜕𝑘1+...+𝑘𝑚𝑓(0, ..., 0)

𝜕𝑧𝑘11 ...𝜕𝑧
𝑘𝑚
𝑚

⃒⃒⃒⃒
⃒

𝑚∏︁
𝑗=1

𝑧
𝑘𝑗
0𝑗 , (19)

which is the series with positive terms. The absolute convergence of the series
(15) in the polycylinder 𝑃 =

{︀
(𝑧1, ..., 𝑧𝑚) ∈ C𝑚||𝑧𝑗 | < 𝜗𝑗 , 𝑗 = 1,𝑚

}︀
implies

the absolute convergence of the series (19) when 0 < 𝑧0𝑗 < 𝜗𝑗 , 𝑗 = 1,𝑚. Let’s
set 𝑧0𝑗 = 𝑒−𝜈𝐴𝑞𝑗 − 𝜀𝑗 , 𝑗 = 1,𝑚 for some small fixed 𝜀𝑗 > 0, 𝑗 = 1,𝑚. Since
𝜗𝑗 = 𝑒−𝜈𝐴𝑞𝑗 , 𝑗 = 1,𝑚 and 𝜀𝑗 > 0, 𝑗 = 1,𝑚 are small, then 0 < 𝑧0𝑗 < 𝜗𝑗 , 𝑗 =

1,𝑚.
Let’s prove that

lim
𝑘1,...,𝑘𝑚→∞

1
𝑘1!...𝑘𝑚!

⃒⃒⃒⃒
⃒ 𝜕𝑘1+...+𝑘𝑚𝑓(0,...,0)

𝜕𝑧
𝑘1
1 ...𝜕𝑧

𝑘𝑚
𝑚

⃒⃒⃒⃒
⃒|𝜙(𝑘1𝐴𝑞1+...+𝑘𝑚𝐴𝑞𝑚 )|

1
𝑘1!...𝑘𝑚!

⃒⃒⃒⃒
⃒ 𝜕𝑘1+...+𝑘𝑚𝑓(0,...,0)

𝜕𝑧
𝑘1
1 ...𝜕𝑧

𝑘𝑚
𝑚

⃒⃒⃒⃒
⃒ 𝑚∏︀
𝑗=1

𝑧
𝑘𝑗
0𝑗

=

= lim
𝑘1,...,𝑘𝑚→∞

|𝜙(𝑘1𝐴𝑞1+...+𝑘𝑚𝐴𝑞𝑚 )|
𝑚∏︀

𝑗=1
𝑧
𝑘𝑗
0𝑗

<∞

(20)

for the functions 𝜙(𝑡) ∈ 𝑆𝜈 .

Let’s rewrite the limit (20) in the following form lim
𝑘1,...,𝑘𝑚→∞

|𝜙(𝑘1𝐴𝑞1+...+𝑘𝑚𝐴𝑞𝑚 )|
𝑚∏︀

𝑗=1

(︁
𝑒
−𝜈𝐴𝑞𝑗 −𝜀𝑗

)︁𝑘𝑗

or, the same, lim
𝑘1,...,𝑘𝑚→∞

|𝜙(𝑘1𝐴𝑞1+...+𝑘𝑚𝐴𝑞𝑚 )|
𝑚∏︀

𝑗=1
𝑒
−𝑘𝑗𝜈𝐴𝑞𝑗

𝑚∏︀
𝑗=1

(︂
1−

𝜀𝑗

𝑒
−𝜈𝐴𝑞𝑗

)︂𝑘𝑗
.

Accordingly to [19] (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥, 𝑥 > −1, 𝑛 > 1. Note that this
inequality also holds when 𝑛 = 0 and 𝑛 = 1. Thus,

0 ≤ |𝜙(𝑘1𝐴𝑞1 + ...+ 𝑘𝑚𝐴𝑞𝑚)|
𝑚∏︀
𝑗=1

𝑒−𝑘𝑗𝜈𝐴𝑞𝑗

𝑚∏︀
𝑗=1

(︁
1− 𝜀𝑗

𝑒
−𝜈𝐴𝑞𝑗

)︁𝑘𝑗 ≤ |𝜙(𝑘1𝐴𝑞1 + ...+ 𝑘𝑚𝐴𝑞𝑚)|
𝑚∏︀
𝑗=1

𝑒−𝑘𝑗𝜈𝐴𝑞𝑗

𝑚∏︀
𝑗=1

(︁
1− 𝑘𝑗

𝜀𝑗

𝑒
−𝜈𝐴𝑞𝑗

)︁ (21)

since from 𝑧0𝑗 = 𝑒−𝜈𝐴𝑞𝑗 − 𝜀𝑗 > 0, 𝑗 = 1,𝑚 it follows that 𝜀𝑗

𝑒
−𝜈𝐴𝑞𝑗

< 1, 𝑗 = 1,𝑚

and − 𝜀𝑗

𝑒
−𝜈𝐴𝑞𝑗

> −1, 𝑗 = 1,𝑚.
Due to the fact that 𝜙(𝑡) ∈ 𝑆𝜈 , 𝜙(𝑘1𝐴𝑞1 + ... + 𝑘𝑚𝐴𝑞𝑚) decreases on +∞

faster than 𝑒−𝜈(𝑘1𝐴𝑞1+...+𝑘𝑚𝐴𝑞𝑚 ). So, lim
𝑘1,...,𝑘𝑚→∞

|𝜙(𝑘1𝐴𝑞1+...+𝑘𝑚𝐴𝑞𝑚 )|
𝑚∏︀

𝑗=1
𝑒
−𝑘𝑗𝜈𝐴𝑞𝑗

= 0. And

by the theorem of limit of the product [20] lim
𝑘1,...,𝑘𝑚→∞

𝑚∏︀
𝑗=1

(︁
1− 𝑘𝑗

𝜀𝑗

𝑒
−𝜈𝐴𝑞𝑗

)︁
= ∞.
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Then by the theorem of the limit of the quotient [20] it is derived that

lim
𝑘1,...,𝑘𝑚→∞

|𝜙(𝑘1𝐴𝑞1 + ...+ 𝑘𝑚𝐴𝑞𝑚)|
𝑚∏︀
𝑗=1

𝑒−𝑘𝑗𝜈𝐴𝑞𝑗

𝑚∏︀
𝑗=1

(︁
1− 𝑘𝑗

𝜀𝑗

𝑒
−𝜈𝐴𝑞𝑗

)︁ = 0 (22)

III.3 Proof of the comparison theorem for multiple limits
Let’s prove for the multiple limits the following comparison theorem. If for

the sequences 𝑥𝑘1,...,𝑘𝑚 , 𝑦𝑘1,...,𝑘𝑚 , 𝑧𝑘1,...,𝑘𝑚 the inequalities 𝑥𝑘1,...,𝑘𝑚 ≤ 𝑦𝑘1,...,𝑘𝑚 ≤
𝑧𝑘1,...,𝑘𝑚 always hold, and the sequences 𝑥𝑘1,...,𝑘𝑚 , 𝑧𝑘1,...,𝑘𝑚 tend to the common
multiple limit lim

𝑘1,...,𝑘𝑚→∞
𝑥𝑘1,...,𝑘𝑚 = lim

𝑘1,...,𝑘𝑚→∞
𝑧𝑘1,...,𝑘𝑚 = 𝑎, then the sequence

𝑦𝑘1,...,𝑘𝑚 also has the same multiple limit lim
𝑘1,...,𝑘𝑚→∞

𝑦𝑘1,...,𝑘𝑚 = 𝑎. Let’s fix some

arbitrary 𝜀 > 0. For it there is some number 𝑁1 that when 𝑘𝑖 > 𝑁1, 𝑖 = 1,𝑚

the following holds 𝑎−𝜀 < 𝑥𝑘1,...,𝑘𝑚 < 𝑎+𝜀. Also there is some number 𝑁2 that
when 𝑘𝑖 > 𝑁1, 𝑖 = 1,𝑚 the following holds 𝑎− 𝜀 < 𝑧𝑘1,...,𝑘𝑚 < 𝑎+ 𝜀. Choosing
𝑁 > max {𝑁1, 𝑁2} for 𝑘𝑖 > 𝑁, 𝑖 = 1,𝑚 both previous double inequalities hold
and then 𝑎− 𝜀 < 𝑥𝑘1,...,𝑘𝑚 ≤ 𝑦𝑘1,...,𝑘𝑚 ≤ 𝑧𝑘1,...,𝑘𝑚 < 𝑎+ 𝜀. Thus,

𝑎− 𝜀 < 𝑦𝑘1,...,𝑘𝑚 < 𝑎+ 𝜀 or |𝑦𝑘1,...,𝑘𝑚 − 𝑎| < 𝜀

when 𝑘𝑖 > 𝑁 , 𝑖 = 1,𝑚. That is

lim
𝑘1,...,𝑘𝑚→∞

𝑦𝑘1,...,𝑘𝑚 = 𝑎

is proved.
Thus from (21) with regard to (22) by the proven property of comparison

of multiple limits it is derived that

lim
𝑘1,...,𝑘𝑚→∞

|𝜙(𝑘1𝐴𝑞1 + ...+ 𝑘𝑚𝐴𝑞𝑚)|
𝑚∏︀
𝑗=1

𝑒−𝑘𝑗𝜈𝐴𝑞𝑗

𝑚∏︀
𝑗=1

(︁
1− 𝜀𝑗

𝑒
−𝜈𝐴𝑞𝑗

)︁𝑘𝑗 = 0 <∞.

That is (20) holds. Then by the theorem the series (18) converges for all
functions 𝜙(𝑡) ∈ 𝑆𝜈 .

IV Proof of the series’ (18) convergence for 𝜙(𝑡) ∈ 𝐾0

Note that for the functions 𝜙(𝑡) ∈ 𝐾0, since they are equal to zero outside
some bounded domain, there exist numbers 𝑘01, ..., 𝑘0𝑚 such that

|𝜙(𝑘1𝐴𝑞1 + ...+ 𝑘𝑚𝐴𝑞𝑚)| = 0
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for 𝑘𝑖 > 𝑘0𝑖, 𝑖 = 1,𝑚. In this case the convergence of the series (18) can be
proved by the indicated earlier theorem of the comparison of the multiple series
with positive terms. Then for 𝑘𝑖 > 𝑘0𝑖, 𝑖 = 1,𝑚:

0 =
1

𝑘1!...𝑘𝑚!

⃒⃒⃒⃒
⃒𝜕𝑘1+...+𝑘𝑚𝑓(0, ..., 0)

𝜕𝑧𝑘11 ...𝜕𝑧
𝑘𝑚
𝑚

⃒⃒⃒⃒
⃒ |𝜙(𝑘1𝐴𝑞1 + ...+ 𝑘𝑚𝐴𝑞𝑚)| ≤

≤ 1

𝑘1!...𝑘𝑚!

⃒⃒⃒⃒
⃒𝜕𝑘1+...+𝑘𝑚𝑓(0, ..., 0)

𝜕𝑧𝑘11 ...𝜕𝑧
𝑘𝑚
𝑚

⃒⃒⃒⃒
⃒

𝑚∏︁
𝑖=1

𝑧𝑘𝑖0𝑖

is derived. Therefore, the series (18) is convergent for all functions 𝜙(𝑡) ∈ 𝐾0.
Thus, it is proved that the series (17) converges absolutely for all functions
𝜙(𝑡) ∈ 𝑆𝜈 ∪𝐾0, and the series (16) converges in the sense indicated earlier.

The proved convergence of the series (16) implies the correctness of the
term-by-term application of the series (16) to any function from the spaces
𝐾𝑚,𝑚 ≥ 0,𝐾, 𝑆𝜈 .

V Proof that the resulting series (16) is the original for the
Laplace transform (13)

Now let’s prove that the resulting series (16) is the original for the Laplace
transform (13). For this, the Laplace transform is applied to the series (16)

𝐿

[︃
∞∑︀

𝑘1,...,𝑘𝑚=0

1
𝑘1!...𝑘𝑚!

𝜕𝑘1+...+𝑘𝑚𝑓(0,...,0)

𝜕𝑧
𝑘1
1 ...𝜕𝑧𝑘𝑚𝑚

𝛿(𝑡− 𝑘1𝐴𝑞1 − ...− 𝑘𝑚𝐴𝑞𝑚)

]︃
=

=
∞∑︀

𝑘1,...,𝑘𝑚=0

1
𝑘1!...𝑘𝑚!

𝜕𝑘1+...+𝑘𝑚𝑓(0,...,0)

𝜕𝑧
𝑘1
1 ...𝜕𝑧𝑘𝑚𝑚

𝑒
−𝑠

𝑚∑︀
𝑗=1

𝑘𝑗𝐴𝑞𝑗

Let’s prove that the derived series
∞∑︁

𝑘1,...,𝑘𝑚=0

1

𝑘1!...𝑘𝑚!

𝜕𝑘1+...+𝑘𝑚𝑓(0, ..., 0)

𝜕𝑧𝑘11 ...𝜕𝑧
𝑘𝑚
𝑚

𝑒
−𝑠

𝑚∑︀
𝑗=1

𝑘𝑗𝐴𝑞𝑗

(23)

converges to the known transform (13).
The series (23), taking into account the change of variables 𝑧𝑗 = 𝑒−𝑠𝐴𝑞𝑗 , 𝑗 =

1,𝑚, can be written as (15), that is, it is an expansion of the function
𝑓(𝑧1, ..., 𝑧𝑚) (14) in Taylor series. According to the theorems [21] and the
proved holomorphy of the function 𝑓(𝑧1, ..., 𝑧𝑚), it is derived that the series
(23) converges to the function 𝑓(𝑧1, ..., 𝑧𝑚) (14) with the radiuses of conver-
gence 𝑟𝑗 = 𝜗𝑗 , 𝑗 = 1,𝑚, which corresponds to the entire range of the variables
|𝑧𝑗 | < 𝜗𝑗 , 𝑗 = 1,𝑚.

The statement of the theorem is proved.
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2.3. Relation with the convolution

Let’s consider the function of the structure (1)

1

𝑐0 +
𝑁∑︀
𝑖=1

𝑐𝑖𝑒−𝑠𝐴𝑖

(24)

and the most general form of the transform, the partial case of which is the
function (24)

𝑥𝐿(𝑠) =
𝑓𝐿(𝑠)

𝑐0 +𝐾𝐿(𝑠)
(25)

Here 𝑓(𝑡) = 𝛿(𝑡),𝐾(𝑡) =
𝑁∑︀
𝑖=1

𝑐𝑖𝛿(𝑡 − 𝐴𝑖) for the function (24). As it was

shown in [14], the equation (25) can be written using convolution [17][︃
𝑐0𝛿(𝑡) +

𝑁∑︁
𝑖=1

𝑐𝑖𝛿(𝑡−𝐴𝑖)

]︃
* 𝑥(𝑡) = 𝛿(𝑡) (26)

That is, finding the original 𝑥(𝑡) is reduced to the solving of the convolution
equation (26). So, the derived results from the theorems regarding the function
(24) can be verified using the convolution. Also the following consequences can
be formulated

Consequence 1
[︂
𝑐0𝛿(𝑡) +

𝑁∑︀
𝑖=1

𝑐𝑖𝛿(𝑡− 𝑛𝑖𝐴𝑚)

]︂−1

=
∞∑︀
𝑘=0

𝑓 (𝑘)(0)
𝑘! 𝛿(𝑡 − 𝑘𝐴𝑚),

where 𝑓(𝑧) = 1

𝑐0+
𝑁∑︀

𝑘=1
𝑐𝑘𝑧

𝑛𝑘

.

Consequence 2

[︃
𝑐0𝛿(𝑡) +

𝑁∑︁
𝑖=1

𝑐𝑖𝛿(𝑡− 𝑘1𝐴𝑞1 − . . .− 𝑘𝑚𝐴𝑞𝑚)

]︃−1

=
∞∑︁

𝑘1,...,𝑘𝑚=0

1

𝑘1!...𝑘𝑚!

𝜕𝑘1+...+𝑘𝑚𝑓(0, ..., 0)

𝜕𝑧𝑘11 ...𝜕𝑧
𝑘𝑚
𝑚

𝛿(𝑡− 𝑘1𝐴𝑞1 − ...− 𝑘𝑚𝐴𝑞𝑚),

where 𝑓(𝑧1, . . . , 𝑧𝑚) = 1

𝑐0+
𝑁∑︀

𝑘=1

𝑐𝑘
𝑚∏︀

𝑗=1
𝑧
𝑛𝑘𝑗
𝑗

.

The verification of the theorems for some examples of the function (24)
using given consequences is done in Appendix B.
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3. Conclusions

In the article the new method for the analytical inversion of the Laplace
transform is proposed for some cases. The theorems are proved. The results
derived by the new method are compared with the formulas known in literature.
The new formulas of analytical inversion of Laplace transform are presented.
This method can be used for the mechanical problems dealing with Laplace
transform.

A. Some other examples of functions of the structure (2)

A.1. Logarithmic case

The transform (2) can be written in the following form

ln

⃒⃒⃒⃒
⃒𝑐0 +

𝑁∑︁
𝑖=1

𝑐𝑖𝑒
−𝑠𝑛𝑖𝐴𝑞

⃒⃒⃒⃒
⃒ (𝐴.1)

The function (3) in this case can be written as

𝑓(𝑧) = ln

⃒⃒⃒⃒
⃒𝑐0 +

𝑁∑︁
𝑘=1

𝑐𝑘𝑧
𝑛𝑘

⃒⃒⃒⃒
⃒ (𝐴.2)

This function has max
1≤𝑘≤𝑁

𝑛𝑘 = 𝜂 singular points 𝑧𝑖 = 𝛼𝑖, 𝑖 = 1, 𝜂. So,

the points 𝑠𝑖 = − 1
𝐴𝑞

ln𝛼𝑖, 𝑖 = 1, 𝜂 are singular points for the function (A.1).

Since 𝛾 in the formula of the inverse Laplace transform 1
2𝜋𝑖

𝛾+𝑖∞∫︀
𝛾−𝑖∞

𝑓(𝑠)𝑒𝑠𝑡𝑑𝑡 is

the abscissa in the semi-plane of the Laplace integral’s absolute convergence

[5], so ℜ𝑠 > 𝜈 > 0, where 𝜈 = max

{︂
max
1≤𝑖≤𝜈

ℜ
{︁
− 1

𝐴𝑞
ln𝛼𝑖

}︁
, 0

}︂
. Thus, when

ℜ𝑠 > 𝜈 > 0 it is fulfilled that |𝑒−𝑠𝐴𝑞 | = |𝑧| < 𝜗 < 1, where 𝜗 = 𝑒−𝜈𝐴𝑞 . So, the
function (A.2) in the domain |𝑧| < 𝜗 < 1 does not have any singular points.

Lemma 1 The function (A.2) satisfies Cauchy-Riemann conditions in the
domain |𝑧| < 𝜗 < 1 where it has no singular points.

Proof. Cauchy-Riemann conditions for the function 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)

have the following form [15]:

𝜕𝑢

𝜕𝑥
=
𝜕𝑣

𝜕𝑦
;
𝜕𝑢

𝜕𝑦
= −𝜕𝑣

𝜕𝑥
(𝐴.3)
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The function (A.2) can be rewritten in the following form

𝑓(𝑧) = ln

⃒⃒⃒⃒
⃒𝑐0 +

𝑁∑︁
𝑘=1

𝑐𝑘𝑧
𝑛𝑘

⃒⃒⃒⃒
⃒

=

⎧⎪⎪⎨⎪⎪⎩
ln

(︂
𝑐0 +

𝑁∑︀
𝑘=1

𝑐𝑘(𝑥+ 𝑖𝑦)𝑛𝑘

)︂
, 𝑐0 +

𝑁∑︀
𝑘=1

𝑐𝑘(𝑥+ 𝑖𝑦)𝑛𝑘 > 0,

ln

(︂
−𝑐0 −

𝑁∑︀
𝑘=1

𝑐𝑘(𝑥+ 𝑖𝑦)𝑛𝑘

)︂
, 𝑐0 +

𝑁∑︀
𝑘=1

𝑐𝑘(𝑥+ 𝑖𝑦)𝑛𝑘 < 0

(A.4)

Calculate partial derivatives of the first function in (A.4):

𝜕𝑓

𝜕𝑥
=

𝑁∑︀
𝑘=1

𝑐𝑘𝑛𝑘(𝑥+ 𝑖𝑦)𝑛𝑘−1

𝑐0 +
𝑁∑︀
𝑘=1

𝑐𝑘(𝑥+ 𝑖𝑦)𝑛𝑘

;
𝜕𝑓

𝜕𝑦
=

𝑁∑︀
𝑘=1

𝑐𝑘𝑛𝑘𝑖(𝑥+ 𝑖𝑦)𝑛𝑘−1

𝑐0 +
𝑁∑︀
𝑘=1

𝑐𝑘(𝑥+ 𝑖𝑦)𝑛𝑘

(𝐴.5)

Note that partial derivatives of the second function in (A.4) have the same
form (A.5).

Let’s rewrite the denominator

1

𝑐0+
𝑁∑︀

𝑘=1
𝑐𝑘𝑧

𝑛𝑘

= 1

𝑐0+
𝑁∑︀

𝑘=1
𝑐𝑘(𝑥+𝑖𝑦)𝑛𝑘

= 1

𝑐0+
𝑁∑︀

𝑘=1
𝑐𝑘

𝑛𝑘∑︀
𝑙=0

𝐶𝑙
𝑛𝑘

𝑥𝑛𝑘−𝑙(𝑖𝑦)𝑙
=

= 1

𝑐0+
𝑁∑︀

𝑘=1
𝑐𝑘

[𝑛𝑘/2]∑︀
𝑙=0

𝐶2𝑙
𝑛𝑘

𝑥𝑛𝑘−2𝑙(−1)𝑙𝑦2𝑙+𝑖
𝑁∑︀

𝑘=1
𝑐𝑘

[(𝑛𝑘−1)/2]∑︀
𝑙=0

𝐶2𝑙+1
𝑛𝑘

𝑥𝑛𝑘−2𝑙−1(−1)𝑙𝑦2𝑙+1

=

= 1
𝑅𝑒+𝑖𝐼𝑚 = 𝑅𝑒−𝑖𝐼𝑚

𝑅𝑒2+𝐼𝑚2

Here

𝑅𝑒(𝑥, 𝑦) = 𝑐0 +
𝑁∑︁
𝑘=1

𝑐𝑘

[𝑛𝑘/2]∑︁
𝑙=0

𝐶2𝑙
𝑛𝑘
𝑥𝑛𝑘−2𝑙(−1)𝑙𝑦2𝑙,

𝐼𝑚(𝑥, 𝑦) =

𝑁∑︁
𝑘=1

𝑐𝑘

[(𝑛𝑘−1)/2]∑︁
𝑙=0

𝐶2𝑙+1
𝑛𝑘

𝑥𝑛𝑘−2𝑙−1(−1)𝑙𝑦2𝑙+1,

(A.6)

where [𝑛𝑘/2] and [(𝑛𝑘 − 1)/2] are integer parts of division.
Analogically to the denominator, the nominator can be rewritten as

𝑁∑︁
𝑘=1

𝑐𝑘𝑛𝑘(𝑥+ 𝑖𝑦)𝑛𝑘−1 =

𝑁∑︁
𝑘=1

𝑐𝑘𝑛𝑘

𝑛𝑘−1∑︁
𝑙=0

𝐶 𝑙
𝑛𝑘−1𝑥

𝑛𝑘−𝑙−1(𝑖𝑦)𝑙 =

=
𝑁∑︁
𝑘=1

𝑐𝑘𝑛𝑘

[(𝑛𝑘−1)/2]∑︁
𝑙=0

𝐶2𝑙
𝑛𝑘−1𝑥

𝑛𝑘−2𝑙−1(−1)𝑙𝑦2𝑙
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+ 𝑖

𝑁∑︁
𝑘=1

𝑐𝑘𝑛𝑘

[(𝑛𝑘−2)/2]∑︁
𝑙=0

𝐶2𝑙+1
𝑛𝑘−1𝑥

𝑛𝑘−2𝑙−2(−1)𝑙𝑦2𝑙+1

= 𝑟𝑒+ 𝑖 𝑖𝑚,

where

𝑟𝑒(𝑥, 𝑦) =
𝑁∑︁
𝑘=1

𝑐𝑘𝑛𝑘

[(𝑛𝑘−1)/2]∑︁
𝑙=0

𝐶2𝑙
𝑛𝑘−1𝑥

𝑛𝑘−2𝑙−1(−1)𝑙𝑦2𝑙,

𝑖𝑚(𝑥, 𝑦) =
𝑁∑︁
𝑘=1

𝑐𝑘𝑛𝑘

[(𝑛𝑘−2)/2]∑︁
𝑙=0

𝐶2𝑙+1
𝑛𝑘−1𝑥

𝑛𝑘−2𝑙−2(−1)𝑙𝑦2𝑙+1

Then the partial derivatives (A.5) can be rewritten in the following form

𝜕𝑓

𝜕𝑥
=

(𝑟𝑒+ 𝑖𝑖𝑚)(𝑅𝑒− 𝑖 𝐼𝑚)

𝑅𝑒2 + 𝐼𝑚2
=

=
𝑟𝑒𝑅𝑒+ 𝑖𝑚 𝐼𝑚

𝑅𝑒2 + 𝐼𝑚2
+ 𝑖

𝑖𝑚𝑅𝑒− 𝑟𝑒 𝐼𝑚

𝑅𝑒2 + 𝐼𝑚2
=
𝜕𝑢

𝜕𝑥
+ 𝑖

𝜕𝑣

𝜕𝑥
𝜕𝑓

𝜕𝑦
=

(𝑖 𝑟𝑒− 𝑖𝑚)(𝑅𝑒− 𝑖 𝐼𝑚)

𝑅𝑒2 + 𝐼𝑚2
=

=
−𝑖𝑚𝑅𝑒+ 𝑟𝑒 𝐼𝑚

𝑅𝑒2 + 𝐼𝑚2
+ 𝑖

𝑟𝑒𝑅𝑒+ 𝑖𝑚 𝐼𝑚

𝑅𝑒2 + 𝐼𝑚2
=
𝜕𝑢

𝜕𝑦
+ 𝑖

𝜕𝑣

𝜕𝑦
.

Here
𝜕𝑢

𝜕𝑥
=
𝑟𝑒𝑅𝑒+ 𝑖𝑚𝐼𝑚

𝑅𝑒2 + 𝐼𝑚2
,

𝜕𝑣

𝜕𝑥
=
𝑖𝑚𝑅𝑒− 𝑟𝑒𝐼𝑚

𝑅𝑒2 + 𝐼𝑚2
,

𝜕𝑢

𝜕𝑦
=

−𝑖𝑚𝑅𝑒+ 𝑟𝑒𝐼𝑚

𝑅𝑒2 + 𝐼𝑚2
,

𝜕𝑣

𝜕𝑦
=
𝑟𝑒𝑅𝑒+ 𝑖𝑚𝐼𝑚

𝑅𝑒2 + 𝐼𝑚2
,

so it is seen that Cauchy-Riemann conditions (A.3) are fulfilled for both func-
tions in (A.4). Consequently, it is derived that the function (A.2) satisfies
Cauchy-Riemann conditions (A.3) for all |𝑧| < 𝜗 < 1.

A.2. Trigonometric case

The transform (2) can be written in the following form

sin

(︃
𝑐0 +

𝑁∑︁
𝑖=1

𝑐𝑖𝑒
−𝑠𝑛𝑖𝐴𝑞

)︃
(𝐴.7)

or

cos

(︃
𝑐0 +

𝑁∑︁
𝑖=1

𝑐𝑖𝑒
−𝑠𝑛𝑖𝐴𝑞

)︃
(𝐴.8)
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The function (3) in this case can be written as

𝑓(𝑧) = sin

(︃
𝑐0 +

𝑁∑︁
𝑘=1

𝑐𝑘𝑧
𝑛𝑘

)︃
(𝐴.9)

or

𝑓(𝑧) = cos

(︃
𝑐0 +

𝑁∑︁
𝑘=1

𝑐𝑘𝑧
𝑛𝑘

)︃
(𝐴.10)

It is obvious that the functions (A.9) and (A.10) have no singular points.
Lemma 2 The function (A.9) satisfies Cauchy-Riemann conditions

throughout the definition.

Proof. First let’s present the function (3) in the form 𝑓(𝑧) = 𝑢(𝑥, 𝑦)+ 𝑖𝑣(𝑥, 𝑦):

𝑓(𝑧) = 𝐹

(︃
𝑐0 +

𝑁∑︁
𝑘=1

𝑐𝑘𝑧
𝑛𝑘

)︃
= 𝐹

(︃
𝑐0 +

𝑁∑︁
𝑘=1

𝑐𝑘(𝑥+ 𝑖𝑦)𝑛𝑘

)︃
=

= 𝐹

(︃
𝑐0 +

𝑁∑︁
𝑘=1

𝑐𝑘

𝑛𝑘∑︁
𝑙=0

𝐶 𝑙
𝑛𝑘
𝑥𝑛𝑘−𝑙(𝑖𝑦)𝑙

)︃
=

= 𝐹

(︃
𝑐0 +

𝑁∑︁
𝑘=1

𝑐𝑘

[𝑛𝑘/2]∑︁
𝑙=0

𝐶2𝑙
𝑛𝑘
𝑥𝑛𝑘−2𝑙(−1)𝑙𝑦2𝑙

+ 𝑖
𝑁∑︁
𝑘=1

𝑐𝑘

[(𝑛𝑘−1)/2]∑︁
𝑙=0

𝐶2𝑙+1
𝑛𝑘

𝑥𝑛𝑘−2𝑙−1(−1)𝑙𝑦2𝑙+1

)︃
=

= 𝐹 (𝑅𝑒+ 𝑖𝐼𝑚)

(A.11)

Here 𝑅𝑒(𝑥, 𝑦), 𝐼𝑚(𝑥, 𝑦) are defined by (A.6). Calculate 𝑅𝑒′𝑥, 𝐼𝑚′
𝑦, 𝑅𝑒′𝑦,

𝐼𝑚′
𝑥.

𝑅𝑒′𝑥 =
𝜕𝑅𝑒

𝜕𝑥
=

𝑁∑︁
𝑘=1

𝑐𝑘

[(𝑛𝑘−1)/2]∑︁
𝑙=0

𝐶2𝑙
𝑛𝑘
(𝑛𝑘 − 2𝑙)𝑥𝑛𝑘−2𝑙−1(−1)𝑙𝑦2𝑙;

𝑅𝑒′𝑦 =
𝜕𝑅𝑒

𝜕𝑦
=

𝑁∑︁
𝑘=1

𝑐𝑘

[𝑛𝑘/2]∑︁
𝑙=0

𝐶2𝑙
𝑛𝑘
𝑥𝑛𝑘−2𝑙(−1)𝑙(2𝑙)𝑦2𝑙−1;

𝐼𝑚′
𝑥 =

𝜕𝐼𝑚

𝜕𝑥
=

𝑁∑︁
𝑘=1

𝑐𝑘

[(𝑛𝑘−1)/2]∑︁
𝑙=0

𝐶2𝑙+1
𝑛𝑘

(𝑛𝑘 − 2𝑙 − 1)𝑥𝑛𝑘−2𝑙−2(−1)𝑙𝑦2𝑙+1;

𝐼𝑚′
𝑦 =

𝜕𝐼𝑚

𝜕𝑦
=

𝑁∑︁
𝑘=1

𝑐𝑘

[(𝑛𝑘−1)/2]∑︁
𝑙=0

𝐶2𝑙+1
𝑛𝑘

𝑥𝑛𝑘−2𝑙−1(−1)𝑙(2𝑙 + 1)𝑦2𝑙.
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Calculate the following differences:

𝑅𝑒′𝑥 − 𝐼𝑚′
𝑦 =

𝑁∑︁
𝑘=1

𝑐𝑘

(︃
[(𝑛𝑘−1)/2]∑︁

𝑙=0

𝐶2𝑙
𝑛𝑘
(𝑛𝑘 − 2𝑙)𝑥𝑛𝑘−2𝑙−1(−1)𝑙𝑦2𝑙−

−
[(𝑛𝑘−1)/2]∑︁

𝑙=0

𝐶2𝑙+1
𝑛𝑘

𝑥𝑛𝑘−2𝑙−1(−1)𝑙(2𝑙 + 1)𝑦2𝑙

)︃
=

=
𝑁∑︁
𝑘=1

𝑐𝑘

(︃
[(𝑛𝑘−1)/2]∑︁

𝑙=0

𝑥𝑛𝑘−2𝑙−1(−1)𝑙𝑦2𝑙

(︃
𝑛𝑘!

(2𝑙)!(𝑛𝑘 − 2𝑙)!
(𝑛𝑘 − 2𝑙)−

− 𝑛𝑘!

(2𝑙 + 1)!(𝑛𝑘 − 2𝑙 − 1)!
(2𝑙 + 1)

)︃)︃
= 0;

𝑅𝑒′𝑦 + 𝐼𝑚′
𝑥 =

𝑁∑︁
𝑘=1

𝑐𝑘

(︃
[𝑛𝑘/2]∑︁
𝑙=0

𝐶2𝑙
𝑛𝑘
𝑥𝑛𝑘−2𝑙(−1)𝑙(2𝑙)𝑦2𝑙−1+

+

[(𝑛𝑘−1)/2]∑︁
𝑙=0

𝐶2𝑙+1
𝑛𝑘

(𝑛𝑘 − 2𝑙 − 1)𝑥𝑛𝑘−2𝑙−2(−1)𝑙𝑦2𝑙+1

)︃
=

=

𝑁∑︁
𝑘=1

𝑐𝑘

(︃
[𝑛𝑘/2]∑︁
𝑙=0

𝑛𝑘!

(2𝑙)!(𝑛𝑘 − 2𝑙)!
(2𝑙)𝑥𝑛𝑘−2𝑙(−1)𝑙𝑦2𝑙−1−

−
[𝑛𝑘/2]∑︁
𝑙=0

𝑛𝑘!

(2𝑙 − 1)!(𝑛𝑘 − 2𝑙 + 1)!
(𝑛𝑘 − 2𝑙 + 1)𝑥𝑛𝑘−2𝑙(−1)𝑙𝑦2𝑙−1

)︃
= 0.

So, it is derived that

𝑅𝑒′𝑥 = 𝐼𝑚′
𝑦, 𝑅𝑒

′
𝑦 = −𝐼𝑚′

𝑥 (𝐴.12)

takes place.
Using (A.11), the properties of trigonometric functions and Euler for-

mulae the function (A.9) can be rewritten as 𝑓(𝑧) = sin (𝑅𝑒+ 𝑖𝐼𝑚) =

sin𝑅𝑒 cos(𝑖𝐼𝑚) + cos𝑅𝑒 sin(𝑖𝐼𝑚) = sin𝑅𝑒 cosh 𝐼𝑚 + 𝑖 cos𝑅𝑒 sinh 𝐼𝑚 =

𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), where 𝑢(𝑥, 𝑦) = sin𝑅𝑒 cosh 𝐼𝑚, 𝑣(𝑥, 𝑦) = cos𝑅𝑒 sinh 𝐼𝑚.
Calculate the partial derivatives 𝜕𝑢

𝜕𝑥 ,
𝜕𝑣
𝜕𝑦 ,

𝜕𝑢
𝜕𝑦 ,

𝜕𝑣
𝜕𝑥 :

𝜕𝑢

𝜕𝑥
= cos𝑅𝑒𝑅𝑒′𝑥 cosh 𝐼𝑚+ sin𝑅𝑒 sinh 𝐼𝑚𝐼𝑚′

𝑥;

𝜕𝑣

𝜕𝑦
= − sin𝑅𝑒𝑅𝑒′𝑦 sinh 𝐼𝑚+ cos𝑅𝑒 cosh 𝐼𝑚𝐼𝑚′

𝑦;
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𝜕𝑢

𝜕𝑦
= cos𝑅𝑒𝑅𝑒′𝑦 cosh 𝐼𝑚+ sin𝑅𝑒 sinh 𝐼𝑚𝐼𝑚′

𝑦;

𝜕𝑣

𝜕𝑥
= − sin𝑅𝑒𝑅𝑒′𝑥 sinh 𝐼𝑚+ cos𝑅𝑒 cosh 𝐼𝑚𝐼𝑚′

𝑥.

Using (A.12), it is derived that Cauchy-Riemann conditions (A.3) are ful-
filled for the function (A.9) for all 𝑧.

Lemma 3 The function (A.10) satisfies Cauchy-Riemann conditions
throughout the definition.

Proof. Using (A.11), the properties of trigonometric functions and Euler
formulae the function (A.10) can be rewritten as 𝑓(𝑧) = cos (𝑅𝑒+ 𝑖𝐼𝑚) =

cos𝑅𝑒 cos(𝑖𝐼𝑚) − sin𝑅𝑒 sin(𝑖𝐼𝑚) = cos𝑅𝑒 cosh 𝐼𝑚 − 𝑖 sin𝑅𝑒 sinh 𝐼𝑚 =

𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), where 𝑢(𝑥, 𝑦) = cos𝑅𝑒 cosh 𝐼𝑚, 𝑣(𝑥, 𝑦) = − sin𝑅𝑒 sinh 𝐼𝑚.
Calculate the partial derivatives 𝜕𝑢

𝜕𝑥 ,
𝜕𝑣
𝜕𝑦 ,

𝜕𝑢
𝜕𝑦 ,

𝜕𝑣
𝜕𝑥 :

𝜕𝑢

𝜕𝑥
= − sin𝑅𝑒𝑅𝑒′𝑥 cosh 𝐼𝑚+ cos𝑅𝑒 sinh 𝐼𝑚𝐼𝑚′

𝑥;

𝜕𝑣

𝜕𝑦
= − cos𝑅𝑒𝑅𝑒′𝑦 sinh 𝐼𝑚− sin𝑅𝑒 cosh 𝐼𝑚𝐼𝑚′

𝑦;

𝜕𝑢

𝜕𝑦
= − sin𝑅𝑒𝑅𝑒′𝑦 cosh 𝐼𝑚+ cos𝑅𝑒 sinh 𝐼𝑚𝐼𝑚′

𝑦;

𝜕𝑣

𝜕𝑥
= − cos𝑅𝑒𝑅𝑒′𝑥 sinh 𝐼𝑚− sin𝑅𝑒 cosh 𝐼𝑚𝐼𝑚′

𝑥.

Using (A.12), it is derived that Cauchy-Riemann conditions (A.3) are ful-
filled for the function (A.10) for all 𝑧.

A.3. Hyperbolic case

The transform (2) can be written in the following form

sinh

(︃
𝑐0 +

𝑁∑︁
𝑖=1

𝑐𝑖𝑒
−𝑠𝑛𝑖𝐴𝑞

)︃
(𝐴.13)

or

cosh

(︃
𝑐0 +

𝑁∑︁
𝑖=1

𝑐𝑖𝑒
−𝑠𝑛𝑖𝐴𝑞

)︃
(𝐴.14)

The function (3) in this case can be written as

𝑓(𝑧) = sinh

(︃
𝑐0 +

𝑁∑︁
𝑘=1

𝑐𝑘𝑧
𝑛𝑘

)︃
(𝐴.15)



The case of analytical inversion of Laplace transform 83

or

𝑓(𝑧) = cosh

(︃
𝑐0 +

𝑁∑︁
𝑘=1

𝑐𝑘𝑧
𝑛𝑘

)︃
(𝐴.16)

It is obvious that the functions (A.15) and (A.16) have no singular points.
Lemma 4 The function (A.15) satisfies Cauchy-Riemann conditions

throughout the definition.

Proof. Using (A.11), the properties of hyperbolic functions and Euler for-
mulae the function (A.15) can be rewritten as 𝑓(𝑧) = sinh (𝑅𝑒+ 𝑖𝐼𝑚) =

sinh𝑅𝑒 cosh(𝑖𝐼𝑚) + cosh𝑅𝑒 sinh(𝑖𝐼𝑚) = sinh𝑅𝑒 cos 𝐼𝑚 + 𝑖 cosh𝑅𝑒 sin 𝐼𝑚 =

𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), where 𝑢(𝑥, 𝑦) = sinh𝑅𝑒 cos 𝐼𝑚, 𝑣(𝑥, 𝑦) = cosh𝑅𝑒 sin 𝐼𝑚.
Calculate the partial derivatives 𝜕𝑢

𝜕𝑥 ,
𝜕𝑣
𝜕𝑦 ,

𝜕𝑢
𝜕𝑦 ,

𝜕𝑣
𝜕𝑥 :

𝜕𝑢

𝜕𝑥
= cosh𝑅𝑒𝑅𝑒′𝑥 cos 𝐼𝑚− sinh𝑅𝑒 sin 𝐼𝑚𝐼𝑚′

𝑥;

𝜕𝑣

𝜕𝑦
= sinh𝑅𝑒𝑅𝑒′𝑦 sin 𝐼𝑚+ cosh𝑅𝑒 cos 𝐼𝑚𝐼𝑚′

𝑦;

𝜕𝑢

𝜕𝑦
= cosh𝑅𝑒𝑅𝑒′𝑦 cos 𝐼𝑚− sinh𝑅𝑒 sin 𝐼𝑚𝐼𝑚′

𝑦;

𝜕𝑣

𝜕𝑥
= sinh𝑅𝑒𝑅𝑒′𝑥 sin 𝐼𝑚+ cosh𝑅𝑒 cos 𝐼𝑚𝐼𝑚′

𝑥.

Using (A.12), it is derived that Cauchy-Riemann conditions (A.3) are ful-
filled for the function (A.15) for all 𝑧.

Lemma 5 The function (A.16) satisfies Cauchy-Riemann conditions
throughout the definition.

Proof. Using (A.11), the properties of hyperbolic functions and Euler for-
mulae the function (A.10) can be rewritten as 𝑓(𝑧) = cosh (𝑅𝑒+ 𝑖𝐼𝑚) =

cosh𝑅𝑒 cosh(𝑖𝐼𝑚) − sinh𝑅𝑒 sinh(𝑖𝐼𝑚) = cosh𝑅𝑒 cos 𝐼𝑚 + 𝑖 sinh𝑅𝑒 sin 𝐼𝑚 =

𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), where 𝑢(𝑥, 𝑦) = cosh𝑅𝑒 cos 𝐼𝑚, 𝑣(𝑥, 𝑦) = sinh𝑅𝑒 sin 𝐼𝑚.
Calculate the partial derivatives 𝜕𝑢

𝜕𝑥 ,
𝜕𝑣
𝜕𝑦 ,

𝜕𝑢
𝜕𝑦 ,

𝜕𝑣
𝜕𝑥 :

𝜕𝑢

𝜕𝑥
= sinh𝑅𝑒𝑅𝑒′𝑥 cos 𝐼𝑚− cosh𝑅𝑒 sin 𝐼𝑚𝐼𝑚′

𝑥;

𝜕𝑣

𝜕𝑦
= cosh𝑅𝑒𝑅𝑒′𝑦 sin 𝐼𝑚+ sinh𝑅𝑒 cos 𝐼𝑚𝐼𝑚′

𝑦;

𝜕𝑢

𝜕𝑦
= sinh𝑅𝑒𝑅𝑒′𝑦 cos 𝐼𝑚− cosh𝑅𝑒 sin 𝐼𝑚𝐼𝑚′

𝑦;
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𝜕𝑣

𝜕𝑥
= cosh𝑅𝑒𝑅𝑒′𝑥 sin 𝐼𝑚+ sinh𝑅𝑒 cos 𝐼𝑚𝐼𝑚′

𝑥.

Using (A.12), it is derived that Cauchy-Riemann conditions (A.3) are ful-
filled for the function (A.16) for all 𝑧.

A.4. Exponential case

The transform (2) can be written in the following form

exp

(︃
𝑐0 +

𝑁∑︁
𝑖=1

𝑐𝑖𝑒
−𝑠𝑛𝑖𝐴𝑞

)︃
(𝐴.17)

The function (3) in this case can be written as

𝑓(𝑧) = exp

(︃
𝑐0 +

𝑁∑︁
𝑘=1

𝑐𝑘𝑧
𝑛𝑘

)︃
(𝐴.18)

It is obvious that the function (A.18) has no singular points.

Lemma 6 The function (A.18) satisfies Cauchy-Riemann conditions
throughout the definition.

Proof. Using (A.11) and Euler formulae the function (A.18) can be rewritten as
𝑓(𝑧) = 𝑒𝑅𝑒 (cos 𝐼𝑚+ 𝑖 sin 𝐼𝑚) = 𝑒𝑅𝑒 cos 𝐼𝑚+ 𝑖𝑒𝑅𝑒 sin 𝐼𝑚 = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦),
where 𝑢(𝑥, 𝑦) = 𝑒𝑅𝑒 cos 𝐼𝑚, 𝑣(𝑥, 𝑦) = 𝑒𝑅𝑒 sin 𝐼𝑚.

Calculate the partial derivatives 𝜕𝑢
𝜕𝑥 ,

𝜕𝑣
𝜕𝑦 ,

𝜕𝑢
𝜕𝑦 ,

𝜕𝑣
𝜕𝑥 :

𝜕𝑢

𝜕𝑥
= 𝑒𝑅𝑒𝑅𝑒′𝑥 cos 𝐼𝑚− 𝑒𝑅𝑒 sin 𝐼𝑚𝐼𝑚′

𝑥;

𝜕𝑣

𝜕𝑦
= 𝑒𝑅𝑒𝑅𝑒′𝑦 sin 𝐼𝑚+ 𝑒𝑅𝑒 cos 𝐼𝑚𝐼𝑚′

𝑦;

𝜕𝑢

𝜕𝑦
= 𝑒𝑅𝑒𝑅𝑒′𝑦 cos 𝐼𝑚− 𝑒𝑅𝑒 sin 𝐼𝑚𝐼𝑚′

𝑦;

𝜕𝑣

𝜕𝑥
= 𝑒𝑅𝑒𝑅𝑒′𝑥 sin 𝐼𝑚+ 𝑒𝑅𝑒 cos 𝐼𝑚𝐼𝑚′

𝑥.

Using (A.12), it is derived that Cauchy-Riemann conditions (A.3) are ful-
filled for the function (A.18) for all 𝑧.
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B. Examples and verification

B.1. Verification with the previously known results

The verification of the proposed method is done on the known transforms.
Consider the functions 1

1−𝑒−𝑠𝐴 and 1
1+𝑒−𝑠𝐴 when 𝐴 > 0. From [24] it is known

that

𝐿−1

[︂
1

1− 𝑒−𝑠𝐴

]︂
=

∞∑︁
𝑛=0

𝛿(𝑡− 𝑛𝐴), (𝐵.1)

𝐿−1

[︂
1

1 + 𝑒−𝑠𝐴

]︂
=

∞∑︁
𝑛=0

(−1)𝑛𝛿(𝑡− 𝑛𝐴) (𝐵.2)

Let’s show that the results derived from theorem 1 are consistent with the
known results (B.1)-(B.2).

According to theorem 1

𝐿−1

[︂
1

1− 𝑒−𝑠𝐴

]︂
=
[︀
𝑧 = 𝑒−𝑠𝐴

]︀
= 𝐿−1

[︂
1

1− 𝑧

]︂
=

∞∑︁
𝑘=0

𝛿(𝑡− 𝑘𝐴), (𝐵.3)

which is congruent to (B.1).

𝐿−1

[︂
1

1 + 𝑒−𝑠𝐴

]︂
=
[︀
𝑧 = 𝑒−𝑠𝐴

]︀
= 𝐿−1

[︂
1

1 + 𝑧

]︂
=

∞∑︁
𝑘=0

(−1)𝑘𝛿(𝑡− 𝑘𝐴), (𝐵.4)

which is congruent to (B.2).
So, the known results (B.1)-(B.2) are equal to the results derived from

theorem 1 (B.3)-(B.4).
Let’s consider some examples of application of the proved theorems.

B.2. Some examples based on the theorem 1

Example 1 Consider the following functions 1
(1−𝑑𝑒−𝑠𝐴)𝛼

and 1
(1+𝑑𝑒−𝑠𝐴)𝛼

when 𝐴, 𝑑 > 0 are some digits, 𝛼 is a natural digit.
The Taylor series can be easily constructed for the functions 𝑓(𝑧) = 1

(1−𝑑𝑧)𝛼

and 𝑔(𝑧) = 1
(1+𝑑𝑧)𝛼 :

𝑓(𝑧) = 1 +
∞∑︀
𝑘=1

𝑑𝑘𝛼(𝛼+1)...(𝛼+𝑘−1)
𝑘! 𝑧𝑘

𝑔(𝑧) = 1 +
∞∑︀
𝑘=1

(−1)𝑘𝑑𝑘𝛼(𝛼+1)...(𝛼+𝑘−1)
𝑘! 𝑧𝑘
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According to theorem 1

𝐿−1

[︂
1

(1− 𝑑𝑒−𝑠𝐴)𝛼

]︂
=
[︀
𝑧 = 𝑒−𝑠𝐴

]︀
= 𝐿−1 [𝑓(𝑧)] =

= 𝛿(𝑡) +

∞∑︁
𝑘=1

𝑑𝑘𝛼(𝛼+ 1)...(𝛼+ 𝑘 − 1)

𝑘!
𝛿(𝑡− 𝑘𝐴)

𝐿−1

[︂
1

(1 + 𝑑𝑒−𝑠𝐴)𝛼

]︂
=
[︀
𝑧 = 𝑒−𝑠𝐴

]︀
= 𝐿−1 [𝑔(𝑧)] =

= 𝛿(𝑡) +

∞∑︁
𝑘=1

(−1)𝑘𝑑𝑘𝛼(𝛼+ 1)...(𝛼+ 𝑘 − 1)

𝑘!
𝛿(𝑡− 𝑘𝐴).

Finally the following formulas are derived

𝐿−1

[︂
1

(1− 𝑑𝑒−𝑠𝐴)𝛼

]︂
= 𝛿(𝑡) +

∞∑︁
𝑘=1

𝑑𝑘𝛼(𝛼+ 1)...(𝛼+ 𝑘 − 1)

𝑘!
𝛿(𝑡− 𝑘𝐴) (𝐵.5)

𝐿−1

[︂
1

(1 + 𝑑𝑒−𝑠𝐴)𝛼

]︂
= 𝛿(𝑡) +

∞∑︁
𝑘=1

(−1)𝑘𝑑𝑘𝛼(𝛼+ 1)...(𝛼+ 𝑘 − 1)

𝑘!
𝛿(𝑡− 𝑘𝐴)

(𝐵.6)

Let’s verify the derived formulas (B.5)-(B.6) with the use of convolution.
It can be done for any fixed 𝛼 and any 𝑑 > 0. Let’s prove this for 𝛼 = 2.

According to (B.5), (B.6)

𝐿−1

[︂
1

(1− 𝑑𝑒−𝑠𝐴)2

]︂
= 𝛿(𝑡) +

∞∑︁
𝑘=1

𝑑𝑘(𝑘 + 1)𝛿(𝑡− 𝑘𝐴), (𝐵.7)

𝐿−1

[︂
1

(1 + 𝑑𝑒−𝑠𝐴)2

]︂
= 𝛿(𝑡) +

∞∑︁
𝑘=1

(−1)𝑘𝑑𝑘(𝑘 + 1)𝛿(𝑡− 𝑘𝐴) (𝐵.8)

Consider the following convolution(︃[︀
𝛿(𝑡)− 2𝑑𝛿(𝑡−𝐴) + 𝑑2𝛿(𝑡− 2𝐴)

]︀
*

[︃
𝛿(𝑡) +

∞∑︁
𝑘=1

𝑑𝑘(𝑘 + 1)𝛿(𝑡− 𝑘𝐴)

]︃
, 𝜙(𝑡)

)︃
=

=

∫︁∫︁
R2

[︀
𝛿(𝜉)− 2𝑑𝛿(𝜉 −𝐴) + 𝑑2𝛿(𝜉 − 2𝐴)

]︀
×

×

[︃
𝛿(𝑥− 𝜉) +

∞∑︁
𝑘=1

𝑑𝑘(𝑘 + 1)𝛿(𝑥− 𝜉 − 𝑘𝐴)

]︃
𝜙(𝑥)𝑑𝑥𝑑𝜉 =

= 𝜙(0)− 2𝑑𝜙(𝐴) + 𝑑2𝜙(2𝐴) +

∞∑︁
𝑘=1

𝑑𝑘(𝑘 + 1)𝜙(𝑘𝐴)−



The case of analytical inversion of Laplace transform 87

− 2

∞∑︁
𝑘=2

𝑑𝑘𝑘𝜙(𝑘𝐴) +

∞∑︁
𝑘=3

𝑑𝑘(𝑘 − 1)𝜙(𝑘𝐴) = 𝜙(0) = (𝛿(𝑡), 𝜙(𝑡))

So, it is proved that

[︀
𝛿(𝑡)− 2𝑑𝛿(𝑡−𝐴) + 𝑑2𝛿(𝑡− 2𝐴)

]︀
*

[︃
𝛿(𝑡) +

∞∑︁
𝑘=1

𝑑𝑘(𝑘 + 1)𝛿(𝑡− 𝑘𝐴)

]︃
= 𝛿(𝑡).

The equality[︃
𝛿(𝑡) +

∞∑︁
𝑘=1

𝑑𝑘(𝑘 + 1)𝛿(𝑡− 𝑘𝐴)

]︃
*
[︀
𝛿(𝑡)− 2𝑑𝛿(𝑡−𝐴) + 𝑑2𝛿(𝑡− 2𝐴)

]︀
= 𝛿(𝑡)

is proved similarly. So, the correctness of the formula (B.7) is shown.
Consider the following convolution(︃[︀
𝛿(𝑡) + 2𝑑𝛿(𝑡−𝐴) + 𝑑2𝛿(𝑡− 2𝐴)

]︀
*

[︃
𝛿(𝑡) +

∞∑︁
𝑘=1

(−1)𝑘𝑑𝑘(𝑘 + 1)𝛿(𝑡− 𝑘𝐴)

]︃
, 𝜙(𝑡)

)︃
=

=

∫︁∫︁
R2

[︀
𝛿(𝜉) + 2𝑑𝛿(𝜉 −𝐴) + 𝑑2𝛿(𝜉 − 2𝐴)

]︀
×

×

[︃
𝛿(𝑥− 𝜉) +

∞∑︁
𝑘=1

(−1)𝑘𝑑𝑘(𝑘 + 1)𝛿(𝑥− 𝜉 − 𝑘𝐴)

]︃
𝜙(𝑥)𝑑𝑥𝑑𝜉 =

= 𝜙(0) + 2𝑑𝜙(𝐴) + 𝑑2𝜙(2𝐴) +
∞∑︁
𝑘=1

(−1)𝑘𝑑𝑘(𝑘 + 1)𝜙(𝑘𝐴)−

− 2
∞∑︁
𝑘=2

(−1)𝑘𝑑𝑘𝑘𝜙(𝑘𝐴) +
∞∑︁
𝑘=3

(−1)𝑘𝑑𝑘(𝑘 − 1)𝜙(𝑘𝐴) = 𝜙(0) = (𝛿(𝑡), 𝜙(𝑡)) .

So, it is proved that

[︀
𝛿(𝑡) + 2𝑑𝛿(𝑡−𝐴) + 𝑑2𝛿(𝑡− 2𝐴)

]︀
*

[︃
𝛿(𝑡) +

∞∑︁
𝑘=1

(−1)𝑘𝑑𝑘(𝑘 + 1)𝛿(𝑡− 𝑘𝐴)

]︃
= 𝛿(𝑡).

The equality[︃
𝛿(𝑡) +

∞∑︁
𝑘=1

(−1)𝑘𝑑𝑘(𝑘 + 1)𝛿(𝑡− 𝑘𝐴)

]︃
*
[︀
𝛿(𝑡) + 2𝑑𝛿(𝑡−𝐴) + 𝑑2𝛿(𝑡− 2𝐴)

]︀
= 𝛿(𝑡)

is proved similarly. So, the correctness of the formula (B.8) is shown.
Example 2 Consider the following functions ln

⃒⃒
1− 𝑑𝑒−𝑠𝐴

⃒⃒
and ln

(︀
1 + 𝑑𝑒−𝑠𝐴

)︀
when 𝐴, 𝑑 > 0 are some digits.
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The Taylor series can be easily constructed for the functions 𝑓(𝑧) =

ln |1− 𝑑𝑧| and 𝑔(𝑧) = ln (1 + 𝑑𝑧):

𝑓(𝑧) = −
∞∑︁
𝑘=1

𝑑𝑘

𝑘
𝑧𝑘

𝑔(𝑧) =

∞∑︁
𝑘=1

(−1)𝑘−1𝑑𝑘

𝑘
𝑧𝑘

According to theorem 1

𝐿−1
[︀
ln
⃒⃒
1− 𝑑𝑒−𝑠𝐴

⃒⃒]︀
= −

∞∑︀
𝑘=1

𝑑𝑘

𝑘 𝛿(𝑡− 𝑘𝐴)

𝐿−1
[︀
ln
(︀
1 + 𝑑𝑒−𝑠𝐴

)︀]︀
=

∞∑︀
𝑘=1

(−1)𝑘−1𝑑𝑘

𝑘 𝛿(𝑡− 𝑘𝐴)

B.3. Some examples based on the theorem 2

Example 1 Consider the function 1
1−𝑝𝑒−𝑠𝐴−𝑞𝑒−𝑠𝐵 , where 𝐴,𝐵, 𝑝, 𝑞 > 0, 𝐴 ̸=

𝐵. After the change of the variables 𝑧1 = 𝑒−𝑠𝐴, 𝑧2 = 𝑒−𝑠𝐵 the initial function
can be rewritten as 𝑓(𝑧1, 𝑧2) = 1

1−𝑝𝑧1−𝑞𝑧2
. The Taylor series can be easily

constructed for this function: 𝑓(𝑧1, 𝑧2) = 1
1−𝑝𝑧1−𝑞𝑧2

=
∞∑︀
𝑖=0

∞∑︀
𝑗=0

𝐶𝑖
𝑖+𝑗𝑝

𝑖𝑞𝑗𝑧𝑖1𝑧
𝑗
2,

where 𝐶𝑖
𝑖+𝑗 =

(𝑖+𝑗)!
𝑖!𝑗! are binomial coefficients.

According to theorem 2

𝐿−1

[︂
1

1− 𝑝𝑒−𝑠𝐴 − 𝑞𝑒−𝑠𝐵

]︂
=

∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝐶𝑖
𝑖+𝑗𝑝

𝑖𝑞𝑗𝛿(𝑡− 𝑖𝐴− 𝑗𝐵) (𝐵.9)

Consider the following convolution⎛⎝[𝛿(𝑡)− 𝑝𝛿(𝑡−𝐴)− 𝑞𝛿(𝑡−𝐵)] *

⎡⎣ ∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝐶𝑖
𝑖+𝑗𝑝

𝑖𝑞𝑗𝛿(𝑡− 𝑖𝐴− 𝑗𝐵)

⎤⎦ , 𝜙(𝑡)
⎞⎠ =

=

∫︁∫︁
𝑅2

[𝛿(𝜉)− 𝑝𝛿(𝜉 −𝐴)− 𝑞𝛿(𝜉 −𝐵)]×

×

⎡⎣ ∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝐶𝑖
𝑖+𝑗𝑝

𝑖𝑞𝑗𝛿(𝑥− 𝜉 − 𝑖𝐴− 𝑗𝐵)

⎤⎦𝜙(𝑥)𝑑𝑥𝑑𝜉 =
=

∞∑︁
𝑖=0

∞∑︁
𝑗=0

(𝑖+ 𝑗)!

𝑖!𝑗!
𝑝𝑖𝑞𝑗𝜙(𝑖𝐴+ 𝑗𝐵)−

∞∑︁
𝑖=1

∞∑︁
𝑗=0

(𝑖+ 𝑗 − 1)!

(𝑖− 1)!𝑗!
𝑝𝑖𝑞𝑗𝜙(𝑖𝐴+ 𝑗𝐵)−
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−
∞∑︁
𝑖=0

∞∑︁
𝑗=1

(𝑖+ 𝑗 − 1)!

𝑖!(𝑗 − 1)!
𝑝𝑖𝑞𝑗𝜙(𝑖𝐴+ 𝑗𝐵) = 𝜙(0) = (𝛿(𝑡), 𝜙(𝑡))

So, it is proved that

[𝛿(𝑡)− 𝑝𝛿(𝑡−𝐴)− 𝑞𝛿(𝑡−𝐵)] *

⎡⎣ ∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝐶𝑖
𝑖+𝑗𝑝

𝑖𝑞𝑗𝛿(𝑡− 𝑖𝐴− 𝑗𝐵)

⎤⎦ = 𝛿(𝑡).

The equality⎡⎣ ∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝐶𝑖
𝑖+𝑗𝑝

𝑖𝑞𝑗𝛿(𝑡− 𝑖𝐴− 𝑗𝐵)

⎤⎦ * [𝛿(𝑡)− 𝑝𝛿(𝑡−𝐴)− 𝑞𝛿(𝑡−𝐵)] = 𝛿(𝑡)

is proved similarly. So, the correctness of the formula (B.9) is shown.
Let’s prove that when 𝐴 = 𝐵 > 0 the inverse formula (B.9) is congruent

to the inverse formula (B.5) for the case 1.
When 𝐴 = 𝐵 > 0 1

1−𝑝𝑒−𝑠𝐴−𝑞𝑒−𝑠𝐵 = 1
1−(𝑝+𝑞)𝑒−𝑠𝐴 . According to (B.5) when

𝑑 = 𝑝+ 𝑞, 𝛼 = 1

𝐿−1

[︂
1

1− (𝑝+ 𝑞)𝑒−𝑠𝐴

]︂
=

∞∑︁
𝑘=0

(𝑝+ 𝑞)𝑘𝛿(𝑡− 𝑘𝐴) (𝐵.10)

Let’s show that the expression (B.9) coincides with (B.10) in the case when
𝐴 = 𝐵. We have

∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝐶𝑖
𝑖+𝑗𝑝

𝑖𝑞𝑗𝛿(𝑡− (𝑖+ 𝑗)𝐴) = [𝑘 = 𝑖+ 𝑗] =

=

∞∑︁
𝑘=0

𝛿(𝑡− 𝑘𝐴)

𝑘∑︁
𝑗=0

𝐶𝑗
𝑘𝑝

𝑘−𝑗𝑞𝑗 =

∞∑︁
𝑘=0

(𝑝+ 𝑞)𝑘𝛿(𝑡− 𝑘𝐴),

which coincides with (B.10).
Example 2 Consider the function 1

1+𝑝𝑒−𝑠𝐴+𝑞𝑒−𝑠𝐵 , where 𝐴,𝐵, 𝑝, 𝑞 > 0, 𝐴 ̸=
𝐵. After the change of the variables 𝑧1 = 𝑒−𝑠𝐴, 𝑧2 = 𝑒−𝑠𝐵 the initial function
can be rewritten as 𝑓(𝑧1, 𝑧2) = 1

1+𝑝𝑧1+𝑞𝑧2
. The Taylor series can be easily con-

structed for this function: 𝑓(𝑧1, 𝑧2) = 1
1+𝑝𝑧1+𝑞𝑧2

=
∞∑︀
𝑖=0

∞∑︀
𝑗=0

(−1)𝑖+𝑗𝑝𝑖𝑞𝑗𝐶𝑖
𝑖+𝑗𝑧

𝑖
1𝑧

𝑗
2.

According to theorem 2

𝐿−1

[︂
1

1 + 𝑝𝑒−𝑠𝐴 + 𝑞𝑒−𝑠𝐵

]︂
=

∞∑︁
𝑖=0

∞∑︁
𝑗=0

(−1)𝑖+𝑗𝑝𝑖𝑞𝑗𝐶𝑖
𝑖+𝑗𝛿(𝑡− 𝑖𝐴− 𝑗𝐵) (𝐵.11)
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Consider the following convolution⎛⎝[𝛿(𝑡) + 𝑝𝛿(𝑡−𝐴) + 𝑞𝛿(𝑡−𝐵)] *

⎡⎣ ∞∑︁
𝑖=0

∞∑︁
𝑗=0

(−1)𝑖+𝑗𝑝𝑖𝑞𝑗𝐶𝑖
𝑖+𝑗𝛿(𝑡− 𝑖𝐴− 𝑗𝐵)

⎤⎦ , 𝜙(𝑡)
⎞⎠ =

=

∫︁∫︁
𝑅2

[𝛿(𝜉) + 𝑝𝛿(𝜉 −𝐴) + 𝑞𝛿(𝜉 −𝐵)]×

×

⎡⎣ ∞∑︁
𝑖=0

∞∑︁
𝑗=0

(−1)𝑖+𝑗𝐶𝑖
𝑖+𝑗𝑝

𝑖𝑞𝑗𝛿(𝑥− 𝜉 − 𝑖𝐴− 𝑗𝐵)

⎤⎦𝜙(𝑥)𝑑𝑥𝑑𝜉 =
=

∞∑︁
𝑖=0

∞∑︁
𝑗=0

(−1)𝑖+𝑗𝑝𝑖𝑞𝑗
(𝑖+ 𝑗)!

𝑖!𝑗!
𝜙(𝑖𝐴+ 𝑗𝐵)−

−
∞∑︁
𝑖=1

∞∑︁
𝑗=0

(−1)𝑖+𝑗 (𝑖+ 𝑗 − 1)!

(𝑖− 1)!𝑗!
𝑝𝑖𝑞𝑗𝜙(𝑖𝐴+ 𝑗𝐵)−

−
∞∑︁
𝑖=0

∞∑︁
𝑗=1

(−1)𝑖+𝑗 (𝑖+ 𝑗 − 1)!

𝑖!(𝑗 − 1)!
𝑝𝑖𝑞𝑗𝜙(𝑖𝐴+ 𝑗𝐵) = 𝜙(0) = (𝛿(𝑡), 𝜙(𝑡))

So, it is proved that

[𝛿(𝑡) + 𝑝𝛿(𝑡−𝐴) + 𝑞𝛿(𝑡−𝐵)]*

⎡⎣ ∞∑︁
𝑖=0

∞∑︁
𝑗=0

(−1)𝑖+𝑗𝐶𝑖
𝑖+𝑗𝑝

𝑖𝑞𝑗𝛿(𝑡− 𝑖𝐴− 𝑗𝐵)

⎤⎦ = 𝛿(𝑡).

The equality⎡⎣ ∞∑︁
𝑖=0

∞∑︁
𝑗=0

(−1)𝑖+𝑗𝐶𝑖
𝑖+𝑗𝑝

𝑖𝑞𝑗𝛿(𝑡− 𝑖𝐴− 𝑗𝐵)

⎤⎦*[𝛿(𝑡) + 𝑝𝛿(𝑡−𝐴) + 𝑞𝛿(𝑡−𝐵)] = 𝛿(𝑡)

is proved similarly. So, the correctness of the formula (B.11) is shown.
Let’s prove that when 𝐴 = 𝐵 > 0 the inverse formula (B.11) is congruent

to the inverse formula (B.6) for the case 1.
When 𝐴 = 𝐵 > 0 1

1+𝑝𝑒−𝑠𝐴+𝑞𝑒−𝑠𝐵 = 1
1+(𝑝+𝑞)𝑒−𝑠𝐴 . According to (B.6) when

𝑑 = 𝑝+ 𝑞, 𝛼 = 1

𝐿−1

[︂
1

1 + (𝑝+ 𝑞)𝑒−𝑠𝐴

]︂
=

∞∑︁
𝑘=0

(−1)𝑘(𝑝+ 𝑞)𝑘𝛿(𝑡− 𝑘𝐴) (𝐵.12)

Let’s show that the expression (B.11) coincides with (B.12) in the case when
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𝐴 = 𝐵.
∞∑︀
𝑖=0

∞∑︀
𝑗=0

(−1)𝑖+𝑗𝐶𝑖
𝑖+𝑗𝑝

𝑖𝑞𝑗𝛿(𝑡 − (𝑖 + 𝑗)𝐴) = [𝑘 = 𝑖+ 𝑗] =
∞∑︀
𝑘=0

(−1)𝑘𝛿(𝑡 −

𝑘𝐴)
𝑘∑︀

𝑗=0
𝐶𝑗
𝑘𝑝

𝑘−𝑗𝑞𝑗 =
∞∑︀
𝑘=0

(−1)𝑘(𝑝+ 𝑞)𝑘𝛿(𝑡− 𝑘𝐴), which coincides with (B.12).

Analogically to the examples 1-2 the inverse formulas for the following
functions can be written:

𝐿−1

[︂
1

1− 𝑝𝑒−𝑠𝐴 + 𝑞𝑒−𝑠𝐵

]︂
=

∞∑︁
𝑖=0

∞∑︁
𝑗=0

(−1)𝑗𝐶𝑖
𝑖+𝑗𝑝

𝑖𝑞𝑗𝛿(𝑡− 𝑖𝐴− 𝑗𝐵)

𝐿−1

[︂
1

1 + 𝑝𝑒−𝑠𝐴 − 𝑞𝑒−𝑠𝐵

]︂
=

∞∑︁
𝑖=0

∞∑︁
𝑗=0

(−1)𝑖𝐶𝑖
𝑖+𝑗𝑝

𝑖𝑞𝑗𝛿(𝑡− 𝑖𝐴− 𝑗𝐵)

Example 3 Consider the more general functions 1
(1−𝑝𝑒−𝑠𝐴−𝑞𝑒−𝑠𝐵)𝛼

and
1

(1+𝑝𝑒−𝑠𝐴+𝑞𝑒−𝑠𝐵)𝛼
when 𝐴,𝐵, 𝑝, 𝑞 > 0, 𝐴 ̸= 𝐵, 𝛼 is a natural digit. After

the change of the variables 𝑧1 = 𝑒−𝑠𝐴, 𝑧2 = 𝑒−𝑠𝐵 the initial functions can
be rewritten as 𝑓(𝑧1, 𝑧2) = 1

(1−𝑝𝑧1−𝑞𝑧2)𝛼
, 𝑔(𝑧1, 𝑧2) = 1

(1+𝑝𝑧1+𝑞𝑧2)𝛼
. The Taylor

series can be easily constructed for these functions:

𝑓(𝑧1, 𝑧2) =
1

(1− 𝑝𝑧1 − 𝑞𝑧2)𝛼
=

∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝑝𝑖𝑞𝑗
𝜓𝑖+𝑗(𝛼)

𝑖!𝑗!
𝑧𝑖1𝑧

𝑗
2,

𝑔(𝑧1, 𝑧2) =
1

(1 + 𝑝𝑧1 + 𝑞𝑧2)𝛼
=

∞∑︁
𝑖=0

∞∑︁
𝑗=0

(−1)𝑖+𝑗𝑝𝑖𝑞𝑗
𝜓𝑖+𝑗(𝛼)

𝑖!𝑗!
𝑧𝑖1𝑧

𝑗
2.

Here 𝜓𝑛(𝛼) = 𝛼(𝛼+ 1)...(𝛼+ 𝑛− 1) = (𝛼)𝑛 when 𝑛 > 0 and 𝜓0(𝛼) = 1.
According to theorem 2

𝐿−1

[︂
1

(1− 𝑝𝑒−𝑠𝐴 − 𝑞𝑒−𝑠𝐵)𝛼

]︂
=
[︀
𝑧 = 𝑒−𝑠𝐴

]︀
= 𝐿−1 [𝑓(𝑧1, 𝑧2)] =

=
∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝑝𝑖𝑞𝑗
𝜓𝑖+𝑗(𝛼)

𝑖!𝑗!
𝛿(𝑡− 𝑖𝐴− 𝑗𝐵),

𝐿−1

[︂
1

(1 + 𝑝𝑒−𝑠𝐴 + 𝑞𝑒−𝑠𝐵)𝛼

]︂
=
[︀
𝑧 = 𝑒−𝑠𝐴

]︀
= 𝐿−1 [𝑔(𝑧1, 𝑧2)] =

=
∞∑︁
𝑖=0

∞∑︁
𝑗=0

(−1)𝑖+𝑗𝑝𝑖𝑞𝑗
𝜓𝑖+𝑗(𝛼)

𝑖!𝑗!
𝛿(𝑡− 𝑖𝐴− 𝑗𝐵).

Finally the following formulas are derived

𝐿−1

[︂
1

(1− 𝑝𝑒−𝑠𝐴 − 𝑞𝑒−𝑠𝐵)𝛼

]︂
=

∞∑︁
𝑖=0

∞∑︁
𝑗=0

𝑝𝑖𝑞𝑗
𝜓𝑖+𝑗(𝛼)

𝑖!𝑗!
𝛿(𝑡− 𝑖𝐴− 𝑗𝐵) (𝐵.13)
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𝐿−1

[︂
1

(1 + 𝑝𝑒−𝑠𝐴 + 𝑞𝑒−𝑠𝐵)𝛼

]︂
=

∞∑︁
𝑖=0

∞∑︁
𝑗=0

(−1)𝑖+𝑗𝑝𝑖𝑞𝑗
𝜓𝑖+𝑗(𝛼)

𝑖!𝑗!
𝛿(𝑡− 𝑖𝐴− 𝑗𝐵)

(𝐵.14)

Analogically to (B.13)–(B.14) the inverse formulas for the following func-
tions can be written:

𝐿−1

[︂
1

(1− 𝑝𝑒−𝑠𝐴 + 𝑞𝑒−𝑠𝐵)𝛼

]︂
=

∞∑︁
𝑖=0

∞∑︁
𝑗=0

(−1)𝑗𝑝𝑖𝑞𝑗
𝜓𝑖+𝑗(𝛼)

𝑖!𝑗!
𝛿(𝑡− 𝑖𝐴− 𝑗𝐵)

𝐿−1

[︂
1

(1 + 𝑝𝑒−𝑠𝐴 − 𝑞𝑒−𝑠𝐵)𝛼

]︂
=

∞∑︁
𝑖=0

∞∑︁
𝑗=0

(−1)𝑖𝑝𝑖𝑞𝑗
𝜓𝑖+𝑗(𝛼)

𝑖!𝑗!
𝛿(𝑡− 𝑖𝐴− 𝑗𝐵)
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Журавльова З. Ю.
Випадок аналiтичного обернення перетворення Лапласа

Резюме

У данiй статтi запропоновано новий метод аналiтичного обернення перетворення Ла-
пласу для трансформант, що мiстять експоненти, якi лiнiйно залежать вiд параметра
перетворення Лапласу. Даний метод заснований на розвиненнi трансформанти у ряд
Тейлора и почленному застосуваннi оберненого перетворення Лапласу. Доведено тео-
реми, що пiдтверждують достовiрнiсть та коректнiсть такого пiдходу. Цей метод ви-
користовує узагальненi функцiї, тому отримано деякi кориснi наслiдки, що пов’язанi з
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узагальненими функцiями. Метод перевiрений шляхом порiвняння з вiдомими з лiтера-
тури формулами. Отриманi новi формули для оригиналiв вiд трансформант Лапласу.
Ключовi слова: перетворення Лапласу, аналiтичне обернення, ряди Тейлора, узагаль-
ненi функцiї, згортка.

Журавлёва З. Ю.
Случай аналитического обращения преобразования Лапласа

Резюме

В данной статье предложен новый метод аналитического обращения преобразования
Лапласа для трансформант, которые содержат экспоненты, линейно зависящие от пара-
метра преобразования Лапласа. Данный метод основан на разложении трансформанты
в ряд Тейлора и почленном применении обратного преобразования Лапласа. Доказаны
теоремы, подтверждающие достоверность и корректность такого подхода. Этот метод
использует обобщённые функции, поэтому получены некоторые полезные следствия,
связанные с обратными обобщёнными функциями. Метод проверен путём сравнения с
известными из литературы формулами. Получены новые формулы для оригиналов от
трансформант Лапласа.
Ключевые слова: преобразование Лапласа, аналитическое обращение, ряды Тейлора,
обобщённые функции, свёртка.
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