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Let gi1(a) be the number of Gaussian integer a representation in a product of square-free
factors. Let g2(a) be the number of Gaussian integer a representation in a product of
power-free factors. In this paper we consider their summatory functions - (0)<z g1(a) and
>N ()<z g2(a) and obtain asymptotic formulas for them. Also, we prove analogue of Kétai-
Subbarao theorem to study the distribution of ga2(«) in increasing norm order case.
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1. INTRODUCTION

Let G denote a ring of Gaussian integers
G=Lli]={a+ib|abeZ, i*=—1}.

Let p denote a Gaussian prime integer.

Let Gaussian integer « be power-free if a = pi“p;” ---pkr and
GCD (ki,ka, ..., k) =1,

where k; € N, 4 = 1;r. In other words, « is power-free if there is no Gaussian
integer (8 such that a = ¥, k € {2, 3, ...}. Let us notice that all square-free
numbers are power-free.

Let Gaussian integer « be square-free if for any Gaussian prime integer p
such that p | a there is no positive integer k& > 1 that p* divides . Also notice
that all square-free numbers are power-free.

Each Gaussian integer « can be represented as the product of power-free
(square-free) numbers except € € {+1, +i}. Therefore let go (@) (g1 (a))
denote the number of Gaussian integer « representation in a product of power-

free (square—free) numbers.
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For example, consider the following representations of a = p? - p3 in a

product of power-free factors

a=pl-ps=p1-p1-p2-Pa-P2=Ppip2-Pip2 - Po
= p1-pip2 P2 P2 =p1- (P1p3) = p1- (p1p3) - P2 = p1p2 - (p1p3) -
g2 () =7

In case of square-free factors a has the following representations
O =P1-P1-P2-P2-P2 =pP1P2 - Pib2 - P2 = Pr-PiP2 - p2 - po.
g1 (o) = 3.

By g5 (o) we denote the function below

d; are power-free, i = 1;r,

g5<a>:#{a=5152...@

N (61) < N(d2) <--- < N(ér)},

where N () is the norm of « (i.e. if @ = o + it, then N(a) = o2 + t?).
The purpose of this paper is to prove the asymptotic formula for the sum-
matory functions of g1 (), g2 () and g5 (). These are a generalization of the

results of A. Korchevskiy and Ya. Vorobyov in positive integer case.

2. AUXILIARY RESULTS

Let us consider Hecke zetafunction Z,,(s) with the Hecke character A, («a)

A (o
Im(s)= Y N(é)ﬁ,

0#£a€edG

where A, () = exp(mi arg o), a is a Gaussian integer, m € Z, Re s > 1.
Moreover, we are interested in the case when m = 4m;, my € Z for \,(a)
be the same for associated Gaussian integers.
Thus, for associated Gaussian integers o and e, where ¢ € {1, +i}, the

following relation

holds, because

exp(4mi arg ) = exp(4mi arg ).
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The function Z,,(s) can be analytically continuated to the entire s-plane,
except the point s = 1, where it has a simple pole with residue 7.
For m = 0 we have Zy(s) = 4 ((s) L(s, xa(n)), where ((s) is Riemann
zetafunction, x4(n) is non-main Dirichlet character modulo 4.
Hecke zetafunction Z,,(s) satisfies the functional equation
_ 9 L5 +1-5)

Zm(s)=m m Zm(1 = ),

where Re s > %, I(s) = ‘Ofotsflexp(—t)dt is the gamma function.

It is known that theoabsolute value of a regular function in the interior
of a bounded region is bounded by its absolute value on the boundary of the
region.

Moving the function to the left of the line Re s = % and using Phragm?n-
Lindel&f principle we can get the following estimates for Hecke zetafunction in

critical strip.

Lemma 1 (Estimates for Hecke zetafunction in critical strip).

1, if 0>14+¢,
Zp (0 +it) < { logl|t? + m?], if 1<o<1+e,
1—0o
(t2+m?) 2 log(1+e¢), if 0<o<1.

Our purpose is to study special arithmetic functions g (), g2 («) and
g5 (o). These functions are related to the functions studied by Kétai and
Subbarao in [2].

Let e(n) be an arbitrary arithmetic function. We will assume that e(n) > 0,

e(n) < nf, where ¢ > 0 is arbitrarily small.

Theorem 1 (Katai-Subbarao [2|, Theorem 5.1). Let {e(n)} and {f (n)} be

sequences that satisfy the relation

[1(1+ ) =3 1.

n=2 n=

Moreover e (1) = f(1) = 1. Since we chose the function e(n) so that
e(n) > 0 and e(n) < nf, where € > 0 is arbitrarily small we have that series

Sy % absolutely converges in a half-plane Re s > 1.
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Let the function E(s) define the Dirichlet series created by coefficients e (n)

in a half-plane Re s > 1
o c(n)
E(s)= 2. 5
n=1

And let E(s) satisfy following assumptions

1. There exist positive constants A and [ such that

A
E(s) = W+G(S)

where G(s) is a regular function in a half-plane Re s > % ;

2. If |t| > 3, then there exists a constant Ay such that

IE(1 + it)] < Aglog |t].

If conditions 1 and 2 are met, then exists such a positive integer N that

the following asymptotic formula

)= Z Jn) = e (CO (Ing) % { Z H (h,v) (logzx)z};ﬂf

n<a (hv)

(o) 7 -2 ) o) )

is true. Here ¢y is a countable constant that depends on A and 8, N is an

arbitrary fixed positive integer, H (h, v) are suitable constants independent of x
and N. The sum Z(h,v) means summation over all pairs (h,v), 1 < h < N,
v = 1, 2,..., that satisfy the inequality h + %I/,B < N + 2 + %ﬁ

The function I,,(2)

0
(4n%-12)(4n2-32)...(4n%—(2k—1)?)
KI 8F

where arg z < 7, ag(n) = 1, ag(n) = , is the
modified Bessel function.

The modified Bessel function I,,(z) is one of two linearly independent so-
lutions of the differential equation 2%y” + zy’ — (22 + a?)y = 0 written as the

power series.
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The function I,(z) is regular on C and goes to infinity for real positive z.

Moreover, for a > 0 limy 04 Io(z) = 0 and for o = 0 lim,_,04 lp(x) = 1.

Lemma 2. For positive real numbers x, c, a the following relation

2
e’ ctioco 62+%
Ia (x) = — Wdz
C

27 Je—ioo

holds and for sufficiently large x the following asymptotic formula
e® 402 — 1 1
I, = 1— o=
(@) V2rx < sz (96‘2))

Let us also notice that the constant in the O-term depends only on «.

18 true.

3. GAUSSIAN INTEGER PARTITION IN A SQUARE-FREE NUMBERS

Theorem 2. By g1 (o) we denote the number of square-free divisors of the
Gaussian integer «. Then for ¢ > 0,dy > 0 and sufficiently large x the
following asymptotic formula

n+1

Y o (a):coxgannH(Q\/@) (logx> Y L0(@).

N(a)<z

holds. Here coefficients d,,n > 1, can be defined through the Taylor series

coefficients of some function @g (s) considered below.

Proof. Let e; () be characteristic function over the set of square-free
numbers. Then for the generating function of g; («) following identity in a
half-plane Re s > 1

Ro- T - T (-5

is true.

ogFi(s) = 3 1og<1 - N(1f)> = 3 S LN L

f is square-free

N(f)>1
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o0
1 ( Z(ks)
log F} = — -1
og F1(s) g;k<zcm@ )’
where Z (s) is the well-known Hecke zetafunction with the Hecke character 1.
Thus,
[e o]
1 ([ Z(ks)
F = — -1)].
1(s) = exp (; k <Z(2ks) >>
The series

converges uniformly in each compact of half-plane Res > 0 except points %

and U;]jv , where o 4 i7 are complex roots of Z (s). Thus, the function Fj(s)

is regular in a half-plane Res > 0 except specified points. Hence in a circle

s —1| < % the following representation

F1 (s) = exp <Z(2)1(5—1) + ©o (s))

is true, where the function ¢ (s) is regular in a circle |s — 1| < § . Therefore,
we can consider the Taylor series of ¢q (s) in this circle
o (1)
vo (1)
po(s) =) T (s—1)"

n!

n=0

:COeXp<Z(3)(1$—1)) (1+a1(s—1)—|—a2(s—1)2+...),

where ¢y = exp (g (1)) > 0.

Now, using the well-known relation

1 [2Hiee gstl P {x—l, if ©>1,
S =

27 Jy ioo s(s+1) 0, if 0<z<1,
we get
1 2+i00 335+1
= F; ———ds.
>, mle)=g7 i 1) Sy 98

0< N(a)<=z

Function Fi(s) doesn’t have singularities in a half-plane Re s > 1 except
the first kind pole s = 1. Let us replace the integration segment (2—ioo, 24i00)

with the union of following segments



Gaussian integers partition in power-free numbers product 57

I'; denotes a segment ( 1—ico, 1 — ia [;

I'y denotes a half-circle with radius a and the center in a point s =1
1 +aexp(i9),—g <f< g,(O <a <l

I's denotes a segment [ 1 + ia, 1+ ico ).
It follows from lemma about estimates of Hecke function in critical strip
that integration segments I'y and I's can be estimated as O (332) For the

segment [y we use substitution of integration variable

1
s=1+—-.
z

Hence z = a”lexp(if), =5 <0 < §, ds = =35 d=.
After constricting the integration segment I's into a point the following

equations
1 QZS—H 1 IS_H_Q
— | F ——ds = — F —d
2mi /FQ 1(8)5(3—i-1) ° 27Ti/p2 1(S)s(s%—l) 8
2 s—1
_ / Fi(s) > ds
27 Jr, s(s+1)
2 pbtioco 1 o ( 2)
exp cp()(l—i—f) dz+ O (z
@) (1+32)(2+3)

1
g2 fbtico 22 exp (gpo (1 + %
- m/b_m (z+1)(2z+1)

1
9 rbiico €XD <z + 3 log x>
_ Qo / ( b, b ) dz+ O (xQ)
b

14—+ =4
210 Jp—ine (24 1)(22+1) +z+22+

T
27

b—ioco

)> dz + O (2?)

are true for all b > 0. Hence, we want to use the modified Bessel function

I, (2).
() 1 P xs—l—l J
277@/1“2 1(S>s(s+1) §

, + Llogx

cor? 1 b+ioco exp(z z > b b

— Qo / 1+;1+Z—§+... dz + 0 (z7)
b

2 2m — 00 22

=cop— Z bn/ exp <z + — log l’) 2" 2424+ 0 (zZ) .
2 n=0 b—ioco z
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Note that

omi sl

g [btico exp (z + ﬁ—z)
I (z) = — — 7
b

—100

Therefore,

1/ F(S)Lﬂds—c:ﬁibf (2 lo w>+0(x2)
omi Jp, L s(s+ 1) Uy Al & '

By the asymptotic differentiation we get the statement of the theorem.

4. (FAUSSIAN INTEGER PARTITION IN A POWER-FREE NUMBERS

Theorem 3. By gs (a) we denote the number of power-free divisors of the

Gaussian integer «. Then for sufficiently large x the following asymptotic

formula
n+1 2 log L
AR I s S
N(a)<z (logx) 2
holds. Here d,, n =0, 1, ..., can be defined through the Taylor series coeffi-

cients of some function Fy 3 (s) considered below.

Let ea(a) be characteristic functions over the set of power-free Gaussian
integers. Then for the generating function of gy («) following identity in a
half-plane Re s> 1

—1
Fy(s)= ) ;g\?(gl: 11 <1_Je\?((ao;)s>

0#a€d N(a)>1

is true.

To find the generating series for F» (s) let us consider that the number S(z)
of power-free numbers with norms not more than z is equal to the number of
all Gaussian integers in the circle of a radius 22 with the center in the point
s = 0 without the number of power full numbers in this circle. (The Gaussian
integer « is power-full if o = pl p2 ...pF and GCD (ky, ko, ..., k) > 1,
where k; € N, i = 1;r.) Thus,

S(a:)z:n—x% —x%+0(ajé+5>.
Hence, for Re s > 1 we have

Fx)= Y - =Z(s)— Z(25) — Z(35) + G (s),

« is power—free
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where the function G (s) is regular in a half-plane Re s > %

Therefore,

log F» (s) = Z log (1 - N(15)8> = Z ]\7(1(5)8 + Fa1(s),

§ is power-free § is power-free

B[

where Fy; (s) is a regular function in half-plane Re s >
log Fy(s) = Z (s) + F22 (s)

where F3 5 (s) is a regular function in half-plane Re s >

Sl

T
s—1

F5 (s) = exp <Z (5) + Fopo (s)) = exp ( + Fy3 (3)) )
where Fj 3 (s) is a regular function in half-plane Re s > 3.

Theorem 3 can be proved in a similar way to Theorem 2.

5. (GAUSSIAN INTEGER PARTITION IN A POWER-FREE NUMBERS
NORM ASCENDING ORDER

The function gj(a) denotes the number of representation of Gaussian in-
teger « in the power-free number product @ = §10s...6,, §; are power-free,
i=1;r,and N (1) <N (62) <...< N (4,), where N («) is the norm of a.

For Re s > 1 we have

g (@) ez (@)
g 1 .
> S I (v

0#acG N(a)>2

We will study function gj(a) using the Kdtai-Subbarao theorem.
We have

Be= Y 2o Y 2Ot Re).

0#a€edG

« is power—free

where ea(ar) is a characteristic function over the set of power-free Gaussian
integers, Fj (s) is regular function in a half-plane Re s > %

Moreover,

1 = r(n
26 = X e X

=0
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where 7 (n) is the number of representation of n in a sum of two squares such
that 7 (n) =0 (n®). Here, the constant in the O-term depends on ¢.
In this case all the conditions of the Katai-Subbarao theorem are fulfilled.

Hence, we obtain the following theorem.

Theorem 4. For sufficiently large x the following asymptotic formula

_2htv
Z g5(a) ~ exp <cm/10g x) Z H(h,v) <log:c>
N(a) <z (hw)
_1 -1
2 2h+vwv
X |14+ ag|logx -~ log

holds, where cgy, ag are positive countable constants, mark * above the sum
Z(hﬁ) means that we summarize by all the pairs (h,9), 1 < h < N,9 =

1,2,... such that

1 5)
h+ =9 <N+ —.
+2 - +2

Similar statements can be obtained for analogue for functions g () and

g5 (o) that we will consider further.

6. CONCLUSION

Proposed research methods of Gaussian integers partition number can be
applied to study of partition number function of integer ideals (divisors) from
arbitrary imaginary quadratic field in a product of integer ideals (divisors)
from this field.

HlIpamxo B. B.
PoO3BUTTSA HIJINX TAYCOBUX YUCEJ B JJOBYTOK CTEINEHEBO-BIJIbHUX

Pesrome

Hexait dyskuist g1() siBjiste cOBOI0 YHUCIIO PO3KJIAAAHD I[JION0 IayCOBOrO YUCIA (v Y BUIJIS-
i 1o6yTKy GeskBagparHux aucesn. Hexail dyukmia go(a) aBisie cobO0 IMCIO POKIAIAHD
[[IJIOT0 TayCOBOTO 9NCJIA (v Y BUIVISAAI HOOYTKY CTeleHeBO-BiabHUX ymcesa. B miit crarti mu
PO3IVISTHEMO CyMaTOpHi (byHKIHT ZN(a)gz gi(a) Ta ZN(&)SI g2(a) Ta orpumaeMo JIs HUX
acuMITOTUYHI popmyn. TakoK, MU BUKOPUCTAEMO aHaJOr TeopemMu Kdatai-Subbarao mist
BUBYEHHS POBIOJLTY 3HaYeHb (DYHKII g2 () y BUNAJKY, KOJHM CTENEHEBO-BLILHI MHOXKHUKHI
PO3TAIlIOBaHI B HOPSANKY 3POCTAHHS IX HOPM.

Karowosi caosa: J[zema-gpynxuyis lexxke, Gesxsadpamme uine 2aycose wucao, Cmeneneso-

8iNvHE Ulne 2aycose wucao, meiphul pad Jipixae.
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IlIpamxo B. B.
PABBUEHUE LIEJIBIX MAYCCOBBIX YHUCEJI B MPOUBBEJEHUE CTEINEHHO-CBOBO/IHBIX

Pesrome

Tlycrs dynruus g1 () npegcrapisier coboi YMCI0 pa3bUeHMs 1IeJI0r0 FayCCOBOIO YUCIa (¢ B
BUJIe IPOM3BEIeHNs Oe3KBaApaTHEIX auces. [lycts dynknusa ga (o) nmpeacrasiser coboit auc-
JIO pa3bueHns MeJIoro TayCCOBOrO YUC/Ia (¢ B BUJIE TIPOU3BEIECHUS CTETIEHHO-CBOBOHBIX YUCET.
B 370t cTarThe MBI PACCMOTPUM CyMAaTOpHbIE (OyHKIUH ZN(a)gz gi(a) u ZN(a)gz g2(a),
a TakzKe MOJIYYUM aCCUMITOTHYECKUE (DOPMYJIBI Jjisi HUX. KpoMe Toro, Mbl BOCIOJIB3YEMCSI
aHaJI0roM Teopembl Kétai-Subbarao nyist usyuenus pacnpeiesienns suadennit pynknuu gz (o)
B CJlydae, KOIJIa CTEIEHHO-CBOOOIHBIE MHOXKUTEIN PACIIOJIATAIOTCS B IOPSIIKE BO3POCTAHUS
WX HODM.

Kmouesoie crosa: Jsema-dynryua Iexke, 6esxeadpammoe ueioe 2aycco8o wucAo, CmMeneHHo-

€80600H0€E UeA0E 2aYCCOBO YUCA0, NPOU3BOIAWUTL Pad JJupux.ie.
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