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SPECTRAL PROBLEM OF FULLERENE VIBRATIONS

Small vibrations of a graph of fullerene (truncated icosahedron) is considered each edge of
which is a so-called Stieltjes string (a massless thread bearing finite number of point masses)
symmetric with respect to its midpoint. The spectral problem is obtained by imposing the
continuity and balance of forces conditions at the vertices. It is shown that when all the
edges of the graph are the same then due to the symmetry of the problem there are multiple
eigenvalues. The maximal multiplicity of an eigenvalue of such problem is 32, exactly the
value which is maximal for cyclically connected graphs, i.e. u+ 1 where p is the cyclomatic
number of the graph.
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1. INTRODUCTION

Since the time of Plato and Archimedes, it is known that there are only 5
regular polyhedra that are called Platonic solids. There are also Archimedian
or so-called semiregular polyhedra.

In our work we will consider a truncated icosahedron. From the point of
view of mathematics, this is an old object, which was rediscovered relatively
recently. Interest to this object arose unexpectedly again in connection with
the discovery by chemists of the third state of aggregation of carbon. It turned
out that this state of carbon corresponds to a molecule that consists of 60
atoms, which are located at the vertices of a truncated icosahedron. A fullerene
(buckyball) is any molecule composed entirely of carbon, in the form of a hollow
sphere, ellipsoid, tube, and many other shapes. In our case, we will consider
buckminsterfullerene Cgg. It was prepared in 1989 by Richard Smalley and was
named after Richard Buckminster Fuller, an architect who created a geodesic
dome similar to a truncated icosahedron. Buckminsterfullerene is the smallest
fullerene molecule containing pentagonal and hexagonal faces in which no two

pentagons share an edge. The structure of Cgg is a truncated icosahedron
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(one of the semiregular or Archimedean solids), which resembles an association
football ball of the type made of twenty hexagons and twelve pentagons, with
a carbon atom at the vertices of each polygon and a bond along each polygon
edge [8] (see Fig.1, [9]).

#50895341

In this paper we consider small transverse vibrations of truncated icosa-
hedron the edges of which are so-called Stieltjes strings, i.e. elastic threads
of zero density bearing point masses. Transverse vibrations of graphs of such
strings were considered in many publications 2], [3], [4].

Spectral problems describing longitudinal vibrations of a graph of springs

bearing masses are reduced to the same equations [6].

2. MAIN RESULTS

1. Fullerine graph. We choose arbitrary orientation of the edges of

the graph. Let us consider a Stieltjes string bearing n > 3 point masses

my,ma,...,my (mg > 0), let lo,l1,...,1, (Ix > 0) be the intervals into which
n
the masses divide the total length [ of the string { > Iy =1 |. We enumerate
k=1
the point masses my (k= 1,2,...,n) and subintervals I (k = 0,1,...,n) on

an edge successively in the direction of the edge. In the sequel we consider
Stieltjes strings symmetric with respect to their midpoints. This means that:
1) if n is even then: my = my_p11, k=1,...,n;lx =lpg, k=0,...,n;
2)if nisodd then: mg = my_g11, k=1,...,[n;lx =lo—g, k=0,...,[n],
where [a] denotes the integer part of a.
We consider a fullerene graph G each edge of which is the same symmetric
Stieltjes string bearing n point masses. The graph is stretched and can vibrate

such that each mass moves in the direction orthogonal to the equilibrium po-
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sition of the edge.

Denote by v; (i =1,2,...,60) the vertices of G, by e; (j = 1,2,...,90)
the edges of G.

For each i denote by d(v;) = 3 the degree of the vertex v;, by d*(v;) the
indegree, i.e. the number of edges incoming into v;, by d~(v;) the outdegree,
i.e. the number of edges outgoing from v;. It is clear that 0 < d*(v;) < 3 and
d+(1}2‘) +d (v;) = d(v;) = 3.

Let Wf be the set of numbers of edges incoming into v; and W, be the
set of numbers of edges outgoing from v; (i =1,2,...,60).

It should be noticed that the graph of the fullerine belongs to the class of

cyclically connected graphs

Definition 1 (see [1], Definition 2). Two wvertices v and w of a connected
graph G are said to be cyclically connected if a finite set of cycles C1,Cy, ..., Cy
(C; C G, j=1,2,..k) exists such that v € C1, w € Cy and each neighboring

pair of cycles possesses at least one common vertez.

Definition 2 (see [1], Definition 3). A graph is said to be cyclically connected

if each pair of vertices in it is cyclically connected

We assume absence of point masses at the vertices. Vibrations of masses
on the edges are described by equations (see [5], p. 141 or [11], eq. (0.7.4))
v v vl o -vihe

+ + R AT , 1
lk—l lk k k () ( )

where k =1,2,...,n; j=1,2,...,9;¢g is the number of edges; Vk(j)(t) is the
transverse displacement of the mass my, lying on the edge e;; ¢ is the time.

At an interior vertex v; we impose the continuity conditions

- - Ui )
VO(Jl )(t) — Vb(]z )(t) — .= Vojfi (v7) (t)
@) (3) MU ?

= Vp+1 (t) = Vn+1 (t) == Vn+1 ¢ (t)v

where {jl_,...,j;_(v,)} e W, {jf,...,j}r(v_)} € W and the balance of

1

forces condition

S0 - S - e

lo
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As usually in the linear approach we separate variables by ansatz (see, e.g.
eq. (0.7.4), (0.7.5) in [11]) Vk(J)(t) = U,gj)(z)e”‘t, z = A2, Substituting it into
(1) — (3) we obtain the following spectral problem:

U (z) = U9, (2) . v (2) - U, (2)

= —mpzUY)(2), (4)
lk—l lk
(i) (iz) Ug- (o)
Ut (2) =Up? (2) =--- =0 (2) (5)
- Yn+1 - Yn+1 - - Yn+1 ’

dt(vi) 77(h) (jrh) d=(vi) 7 (Gm) (m)
U (z2) = Up'™ (2) U™ (z) = U™ (2)
> r - =0 (6)

l
m=1 m=1 0

where b =1,2,...,m; i=1,2,...,60; jo, €W, m=J1, . i (5 Jite
VVZ*, m = jfr, e ,j;ﬂw) and U,gj) is the amplitude of vibrations of the mass
my, located on the edge e, z is the spectral parameter. Here equations (5) are
the continuity conditions and (6) describe the balance of forces.

2. Graph of Stieltjes strings vibrations.

Following [5] we look for a solution in the form U,gj) (2) = Rak—2a(z, c)Ul(j)7 k=
1,2,...,n+1, where Rg;_2(z,c) is a polynomials of degree k—1. In the sequel,
we use Ry(c) instead of R (z,c¢) to shorten the notation.

The polynomials Rj(c) satisfy the following recurrence relations:
Ry (c) = lgRag—1(c) + Ra—2(c), (7)

Rok—1(c) = Rak—3(c) — mpzRap_2(c)

with the initial conditions

For a symmetric string

and due to the Lagrange identity

Ran1(0) Ran(1) = Ron1 (1) Ran(0) = —
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(see, e.g. |7], Lemma 3.5) we obtain

= (Ran (1))
0

1
T R, (0)Rop—1(1). 9)
Now we use the procedure described in [10]. It is convenient to introduce

the following solution of (4):

BU) — AUR,, (1)
R2,(0)

U]gj) (Z) _ RQk—Q(O) + A(])RQk—Q(l)v (]‘0)

where AW, BU) are constants independent of k and z. These solutions exist
for all z which are not zeros of Rg,(0). In view of (1), (2), equation (7) for
k =0 implies R_2(0) =0, R_o(1) =1.

Substituting these into (10) we have

BU) — A(j)Rgn(l)
R2,(0)

U (z) = R_5(0) + ADR_y(1) = AV, (11)

In the same way, for k=n+1

BU) — A(j)Rgn(l)

Uh() = = o Ran(0) + AV R (1) = B, (12)
Continuity conditions (5) look now as
(13)
Balance of forces equation (6) with account of (10), (13) attains the form
d*(v;) . . d=(vi) B B
(lnB(Jm)RQn—l(O) _ A(Jm)) _ (B(Jm) _ A(]m)RQn(1)> =0. (14)
m=1 m=1
(lnB(Jm)Rzn_l(O) _ A(]m)) _ (B(Jm) _ A(Jm)RQn(1)>
m=1 m=1
d* (v;) d™ (vs) d* (v;) d™ (vs)
- Z lnB(jﬁl)RM_l(O) + Z AUm) Ry (1) — Z Alm) 4 Z BUm)
m=1 m=1 m=1 m=1
d* (vi) d” (vi)
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dt(v;) d~ (vy)
=Ron(1) [ D ®(vi) + D(vi) | — Y B(vy)
m=1 m=1 Vj~Uq
= Ron(1)d(v:)@(v;) — > ®(v)).

or

Ron(1)d(v:)®(v:) — > ®(v;) =0.

v~
Here the sum is taken over all the vertices v; adjacent with v;.
Finally, we obtain using the notation { = 3Rg,(1),
F = {®(v1),...,P(ve0)}!, and denoting by A the adjacency matrix of our
graph:
(F—AF =0. (15)

Let zp be not a zero of Ra,(0), then it is an eigenvalue of problem (4)—(6) if
and only if p := 3R, (1) is an eigenvalue of matrix equation (15). This means
that the spectrum of problem (4)-(6) consists of zeros of R, (0) and of zeros
of the polynomials 3Ra,, (1) — (s, where (5 (s = 1,2,...,60) are the eigenvalues
of (15).

Theorem 1. The characteristic polynomial of problem (4)—(6) is

¢(2) = (Ran(2,0))* Poo(3Ran(2, 1))
where Pgg is the characteristic polynomial of matrixz A.

Proof. We have already shown above that if 2y is an eigenvalue of
problem (4)—(6) and R, (20,0) # 0 then (y is a zero of Pgo(¢). This gives
60n (with account of multiplicities) eigenvalues of problem (4)-(6). The
total number of eigenvalues is 90n since 90 is the number of edges in the
fullerene. Therefore, there are 30n (with account of multiplicities) eigenval-
ues more. They are the zeros of R30(z,0) because for each eigenvalue there
exist 30 linearly independent eigenvectors which are composed by the vectors
R3(2,0), R4(2,0), ..., Rap—2(2,0) on the edges of the hexagonal faces of the
graph. Theorem is proved.

Using (15) we obtain the characteristic equation for Buckminsterfullerene

graph by program MAPLE

Pso(C) = 2985984 4 54743040¢ + 186416640¢2 — 1566501120¢3 — 7440712560¢*+
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+26034025632¢° + 108565938200¢5 — 310065067080¢” — 831616531095¢5+
+2527365617120¢°+3576552321006¢ 10 —13627897407360¢ 1 —8131429397135¢ 12+
+49433493646080¢ '3 4 4679380503120¢ 1 — 126428882536240¢ 1°+
+29617003666920¢ ¢ 4 238553091055200¢'" — 112654402736360¢ 8 —
—344185906596720¢° + 228227031040884¢% + 390055074762240¢ —
—324375523213200¢%2 — 354145195147200¢% + 351861389316780¢ 24+
+261359090670624¢2® — 303315997028160¢2¢ — 158412719276240¢%7+
+212712221820840¢% 4 79417625268960¢2° — 123163094844616¢3°—
—33076275953760¢3" + 59443188508110¢>? + 11466942645600(>3—
—24056403184260¢3* — 3308173115904¢>5 4 8189116955350¢30+
+792175427520¢37 — 2346799508400¢>® — 156652575440¢37+
+565407465144¢10 + 25376437920¢*! — 114118295000¢ 2 —
—3327625680¢*3 + 19180834020¢* + 347208896¢* — 2661033600¢*°—
—28113600¢*7 + 300906380¢*® + 1700640¢* — 27244512¢%0—
—72240¢5! 4 1925160¢5% 4 1920¢5% — 102160¢°* — 24¢%5+
+3825¢%0 — 90¢®8 + (00

and, consequently, (this is given by MAPLE)
Peo(€) = (€ = 3)(¢* + 3¢+ 1)°(¢* = 3% = 2¢7 + TC+ 1)

(CHDHE+H DU - =3+ -1 -1

Thus we obtain the following set of zeros of Psy: (1 = (o = (3 ~ —2.618,
G =G =2C¢=C~ 2562 (s =0 =Co=C1 = -2 Q2 =3 =
Cla = C15 = Q6 =~ —1.6818, (17 = (18 = C19 &~ —1.438, (20 = (21 = (22 =
Cos3 = Caa =~ —1.303, (25 = (26 = Cor ~ —0.382, (28 = (29 = (30 ~ —0.139,
C31 = (32 = (33 = (34 = (35 ~ 0.618, (36 = (37 = (38 = (39 = G0 = Ca1 =
Ca2 = Cu3 = Cua = 1, (a5 = Qa6 = Qa7 = Qs = 1.562, (a9 = (50 = (51 ~ 1.820,
(52 = (53 = Cpa = (55 = (56 = 2.303, (57 = (58 = (59 = 2.757, (60 = 3.
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3. CONCLUSION

The graph Cgg is cyclically connected (see Definition 2). The maximum
multiplicity of an eigenvalue of the problem on such graph is u + 1 where p
is the cyclomatic number of the graph [1|, Theorem 3.2. Since p=¢q—p+ 1,
where p is the number of vertices and ¢ is the number of edges, in our case
w4+ 1 = 32. We see that in our problem the maximum possible multiplicity
is 32 when the eigenvalue is a (simple) zero of Ra,(z,0) and a double zero of
Ropn(z,1) — 1.

Jlyoxo A. L., ITusosapuux B. M.
CHOEKTPAJIbHA 3AJIAYA, [TOB’SI3AHA 3 KOJIUBAHHSIMU ®YJIEPTHY

Pesrome

PosrasmyTi Masti nmonepeuni konusanns rpady dymnepiny (ycigenoro ikocaeapy), KoxKHe pe-
6pO SKOro — CTIIBTHECIBCbKA CTpyHa (6€3MacoBa HUTKA, 10 Hece Ha cobl CKIHYeHY KIIbKICTh
30CEPE/PKEHNX MAaC), CHMETPUYIHA BiHOCHO CBOET cepemuun. CrekTpasbHa 3aada OTPUMAaHa
HaKJIaJaHHSIM yMOB HEMEPEPBHOCTI Ta GajaHCy cui y BepmmHax. [lokasaHo, M0 sSIKIO BCi
pebpa OgHAKOBI, TO 3aBIdKK CUMETpil 3a/a4i BUHUKAIOTh KPaTHI BiaacHi 3HadenHs. Makcu-
MaJIbHa KPATHICTh TAKOTO BJIACHOTO 3HAYEHHSI CTAHOBUTH 32, IO € MAKCUMAJIBHUM MOKJIV-
BUM J[JIsI ITUKJIIYHO 3B’s13HOTO rpady, To6To 1+ 1, e p — 1e IMUKIJIOMaTUIHe YuCiao rpady.
Karowosi caosa: Cmiavmoeciecvka cmpyna, epad, KpamHicmo, 6aacHe 3HAERHA, UUKAOMA-

MUYHE YUCA0, PEKYDEHMMHT CNIBBIOHOWEHHA, KPATIO8] YMOBU.

Jlyoxo A. U., Iusosapuur B. H.
CHEKTPAJIbHAS 3AJIAYA, CBSI3BAHHASI C KOJIEBAHUSIMU ®YJIEPUHA

Pesrome

Paccmorpenbl Masible moliepedsble KojiebGanusi rpada dynepuna (yCeYeHHOrO HKOCAa3Apa),
KaxK10e pebpo KOTOPOro — CTHJIBTHECOBCKAs CTpyHa (6e3MaccoBasi HUTH, HECYIas Ha cebe
KOHEYHO€ KOJIMYIECTBO COCPEIOTOIYCHHBIX MaCC), CUMMETPpHUIHaA OTHOCUTEJIBHO cBoeit cepeau-
uol. CriekTpaJsibHast 3aja4a [MOJIyYeHa HAJIOXKEHUEM YCJIOBUI HEIIPEPBIBHOCTH U OajlaHCca CUJI
B BeprmHax. [lokazaHo, 4To ecyi Bce pebpa OJIMHAKOBBIE, TO GJIaroapsi CAMMETPUH 332491
BO3HUKAIOT KpaTHbIC CO6CTB6HHI)I€ 3HAYECHUAJ. MaKCI/IMaJIbHaH KPaTHOCTb TaKOI'O CO6CTB€H—
HOI'O 3HAYCHUA 32, YTO dBJIAECTCA MaKCHUMaJIbHBIM BO3MOXKHBIM IJId ITUKJ/JINYECKH CBA3HOI'O
rpada, T.e. u+ 1, rae § — 3TO NUKIOMATHIECKOE UHCJIO Tpada.

Karoueswie crosa: Cmuavmuecosckas cmpyna, 2pad, KpamHocms, cobcmeennoe 3navenue,

UYUKAOMAMUHECKOE HYUCNAO, PEKYPPEHMHDIE COOMHOWEHUA, KPAEBDLE YCAOBUSA.
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