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Laplace transform is a useful tool for solving of dynamic elasticity problems. However,
the problem of analytical inversion of Laplace transform has not yet completely solved.
Therefore, it is relevant to consider the new methods that allow to derive the analytical form
of the original function by the known transform.

In this paper, the new method of analytical inversion of Laplace transform for the trans-
forms of the certain form containing exponents in the denominator that linearly depend on
Laplace transform parameter is proposed. The cases of correlation between the exponential
indices are considered. The theorem is proved according to which the transform is expanded
into the Taylor series, and the original function is derived by term-by-term application of the
inverse Laplace transform. The correctness of the term-by-term application of the inverse
Laplace transform is proved. The results derived by the use of the new method are verified
by comparing them with the previously known formulas. The originals of Laplace transforms
that were not found in the literature are derived.
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1. INTRODUCTION

Dynamic problems for elastic bodies can be solved with the help of Laplace
transform. But the analytical inversion of Laplace transform in many cases is
a complex problem. So, instead of Laplace transform, steady-state oscillations
are sometimes considered. But, of course, they cannot describe an arbitrary
dependence of the time variable.

Some asymptotic schemes are usually used to determine the function’s be-
havior at the points ¢ = 0 and ¢t — oo [1], [2]. Numerical methods for inverting
Laplace transform are usually applied, but their correctness should be con-
firmed by at least some asymptotic methods, because the Laplace transform
inversion problem is not correct [3]. Some numerical inversion methods of
Laplace transform dealing with Laguerre polynomials are used in [4]. These
methods are inverted numerically. The Laplace transform inversion problem for
some functions can be reduced to the problem of solving the Volterra integral
equation of the first or second kind [6], which are usually solved numerically.
The relations dispensing contour integration were derived by the change of
variables in [5].
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In some cases, the original function can be found as the series of residuals
of the transform function [1], [6]. But in many cases the analytical finding of
all poles of the transform function is impossible.

The approach by which the transform function is expanded into series was
proposed in [7]. According to it, the transform function can be expanded not
only into power series, but also into series of exponential functions and even
into series of arbitrary functions if they satisfy the conditions indicated there.
But there were no examples of dealing with generalized functions.

Thus, the problem of analytical inversion of Laplace transform has not yet
been completely solved, but its application is extremely important in solving
dynamic problems.

2. MAaIN RESULTS

The following Laplace transform is considered

1

N
co+ Y ciemsAi
i=1

(1)

Here A; > 0,5 = 1,N, ¢;,i = 1, N, cy # 0 are real constants or functions,
which do not depend on parameter of Laplace transform s, N > 1 is natural
digit.

Let’s consider the case when A; = njAm,,n; € N,i = 1, N for some fixed
number 1 < m < N. Then the transform (1) can be rewritten in the following

form
1

. )
co+ Y cie—snidm
i=1

Denote the single-valued function of the complex variable s e 54 as z,
Since s > 0, then |e~*4m| = |z| < 1. The expression (2) can be rewritten as

fe) = (3)

N
co+ Y cpz™
k=1

It is obvious that the function (3) has max ng =1 singular points z; =

1<k<N
a;,i = 1,n. So, the points s; = —ﬁln aj,i = 1,7 are singular points for
the function (2). Since < in the formula of the inverse Laplace transform
y+ioco

% f f(s)esdt is the abscissa in the semi-plane of the Laplace integral’s
Y—100
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absolute convergence [7], so Rs > v > 0, where v = max {—ﬁ In ai}. Thus,

1<i<y
when Rs > v > 0 it is fulfilled that |e™*4m| = |2| < ¥ < 1, where ¥ =
—vA;, min n;
e 1SisN- 0 So, the function (3) in the domain |z| < ¢ < 1 does not have

any singular points.
First the following lemma should be proved.

Lemma. The function (3) satisfies Cauchy-Riemann conditions in the domain
|z| < ¥ <1 where it has no singular points.

Proof. Cauchy-Riemann conditions for the function f(z) = u(z,y) +
iv(z,y) have the following form [8]:

ou_ o ou__ov "
or Oy’ dy  Ox

First let’s present the function (3) in the form f(z) = u(x,y) + iv(z,y):

f(Z) _ 1 _ 1 _ 1 _
- N - N - N g -
cot+ Y cpzmk cot+ > ck(z+iy)™k cot+ > ek >, Cflkx"k*l(iy)l
k=1 k=1 1 k=1 =0

- N [ng/2 N (D72 -

cot 2 er 2 O™ H(—Dy2ti Yoo X OnlameTH T Dy

=1 =1 =0
1 Re—ilm

= Retilm — ReZL+Im?

Here
N [nk/2]
Re(z,y) =co+ » o »_ Cola™ 2 (—1)ly”,
k=1 =0

N [(nx—1)/2]

Im (1‘ y) Z Z Cgi—i—lxnk—ﬂ—l(_l)ly?l-i-l,

k=1

[nk/2], [(nk — 1)/2] are integer parts of division.
Then f(z) = u(x,y) + iv(z,y) where u(z,y) = paipm.v(zy) =
Im

" Re24Im?:
: ivativeg du Ov du v
Calculate the partial derivatives ', 5y Oy ox

du __ —Rel,Re’+Rel, Im?—2Im/ Relm
or — (Re2+1Im?)2 ’
ov _ —Im} Re>+Im! Im?+2Re] Relm
Fy - (R62+Im2)2 9
ou _ —Rel Re®>+Rel Im?—2Im) Relm
aiy - (R62+Im2)2 9
v —Im/, R62+Im Im? +2Rel, Relm

dxr — (R62+Im2)2
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Note that Cauchy-Riemann conditions (4) for the function (3) are fulfilled
when

Re), = I'my, Rej, = —I'mj, (5)
Calculate Rel,, I'm;, Rej, Im,.

,_ome . & lmZD/A np—21—1 1,21
Refﬁ = 9z — Z Ck Z an(nk _21)33 k (_1) Y3
=1 1=0
/ _ OR N2 2 1 2—1
Re), = ay‘f :kzlck 2 Crp ™™ (=D (2D)y=;
or N [((nk—1)/2]
Iy = 20 = S Y By — 20— )@ AR )y
=1 =0

orm D72 241, —21—1 1 2
Imy, = By :kzlck l;) Cr ™ (=) (20 + 1)y

To check (5) the following differences are calculated:

, , 2D, np—21—1 12l
Rey, — Iy, = k21 Ck Z Chy. (ng — 20) " (—1)'y*—
[ 2172 2A+1,.mp—20—1 ! 2
S e e+ g -

N [(nk—1)/2] o Lol o

=0
ng! )
~ @y, a1 (2 1))) = 0;

/ X rel? 2 ! 201
Rej, + Im, :k21 Ck l;) Cpl a2 (=1) (20)y* '+

[(nk—l)/2]02l+1 9] — 1)z —2-2( 1)l 241 | —
+ > ng (nk — 20— 1)z (=1 N

1=0
_ el ny! 21 =2l (—1)q2l1
= kz::ICk l;) W( )z (—1)'y™ =

[nk/2]
- > @—1)! (ZIZ' 20+ 1) (g — 20+ 1)55”'“_21(—1)1921_1) =0.

It is derived that conditions (5) and, correspondingly, Cauchy-Riemann
conditions (4) for the function f(z) of the form (3) are fulfilled for all |z| <
¥ <1

Theorem 1. L™} | —— 21— | =% %5(1& — kA,,), where the func-

co+ S ciesmiAm k=0
=1

tion f(z) has the form (3).
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Proof.

By the proved lemma the function (3) satisfies Cauchy-Riemann conditions
and, therefore, it is holomorphic and regular [8] for all |z| < ¥ < 1.

According to the theorems [8] the regular function in the circle K : |z —

. X fn) Ly
al < R can be presented by Taylor series f(z) = > fT(a)(z —a)", which is
n=0 ’
convergent everywhere in the circle K.

The circle for the function (3) has the form K : |z| < 9. Inside this circle
the function is regular. So, the following equality holds

> r(k)
foy = Yo L ()
k=0 '

Power series inside the circle of convergence can be term-by-term integrated
and differentiated any number of times, moreover the radius of convergence of
the derived series is equal to the radius of convergence of the original series [9].

Thus, the series (6) has the radius of convergence R = ¢, within which this
series can be term-by-term integrated. That is the following is true:

_ _ _ 2 #(k) (0
Ll - 1 — I l[f(z)]:L l[sz!()zk]:
co+ Y cie—smiAm k=0
=1
THO 20 s X sk gy VT
f k'(O) e—sk:Amestdt — ﬁ ! k'(O) f e—skAmestdt —
' k=0 T y—ico

X £k X k)
=1 k!(O)Lil [emskAn] = l;o : kl@‘s(t — kAm)

Let’s prove that the derived series

(k)
S W50 kan) @
k=0

converges in the sense that all series

(k) . f(k)
(Zf kf0)5<t—kAm>7so<t>) -S> 50004 ®
k=0

absolutely converge for all functions ¢(t) € SUK?, where S is the main space
containing all infinitely differentiable functions which when |z| — oo tends to
zero with all their derivatives of any order faster than any power of 1/|x| [10],
K9 is the main space containing all continuous functions that are zero outside
some bounded domain [10]. Obviously, if the absolute convergence of series
(8) is proved for all functions from the main spaces S and K, then it will also
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take place for the functions from the main spaces K™, m > 0 and K, since
KcKm™CK°KcS|[10].

To prove the convergence of the series

Z ‘f (kA ©)

which is real-valued, let’s use the following theorem, accordingly to which if, at
least starting from some place (say, for n > N), the following inequality holds
o0

ngl < bz—:l, then the convergence of the series ) b, with positive terms

n=1
[e.e]
implies the convergence of the series ) a, with positive terms [11].
n=1

The comparison will be made with the series
> 1l 10

o0
By Abel’s theorem [9] if the power series > ¢,2" converges at the point
n=0
zy« # 0, then it absolutely converges in the circle Ky : |z| < |z, and in any
smaller circle K7 : |z] < Ry < |z this series converges uniformly. In this case
the point 0 < |zg| < ¥ — g9 < ¥ is chosen for some small fixed g > 0. Then,
by Abel’s theorem, using the convergence of the series (6), it is derived that
the series (10) converges (converges absolutely).
Let’s prove that

FHD(0) FEDO)] | k41
e R Y TR el o
F® (0 - f( )
| k!*' |o(kAm)| ol |6
for the functions p(t) € S (it is fair for them that |gp(l<:Am)| # 0 for all k).

Obviously, the inequality (11) will take place if the inequality W <

|z0| holds or, equivalently, the following inequality holds
[p((k+1)Am)|

| o]

< [p(kAn)| (12)

By definition of the main space S [10] ‘ llim zip(x) =0forallg=0,1,2,..
x|—00

For definiteness, the value ¢ = 1 is chosen. According to the definition of the
limit of the sequence [12] the following holds: for each £ > 0, no matter how
small it may be, there exists a number N such that for all n > N: |np(n)| < e.
Accordingly, the following is true for k > N — 1 (A,, > 0)

(k4 D Amp((k + 1) An)| <e (13)
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When 0 < |29] < ¥ —e¢ < ¢, obviously, there will be such number Ny that
for all £k > Ny — 1 the following inequality holds

o < (k4 DA, (14)

Let’s choose such a small digit e, > 0 for which
lp(kAm)| > e (15)

Obviously, for the function |p(kA,,)| that does not turn to 0, such a digit
€« > 0 can always be chosen. Let’s fix it. For this e, > 0 there is some number
N, that for all £ > N, —1 (13) will be true. Let’s choose k > max {N,, No} —1
and combine the inequalities (13)-(15):

[e((k+ 1) Am)|

o] <[(E+ D Anp((k +1)An)| < ex <[p(kAn)],

that is the inequality (12) and therefore (11) takes places. Then, by the theo-
rem, the series (9) is convergent for all functions p(t) € S.

Note that for the functions ¢(t) € K, since they are equal to zero outside
some bounded domain, there exists a number N such that |p(kA,,)] = 0
for k > N. In this case, the convergence of the series (9) can be proved
by another theorem, according to which if, at least starting from some place
(say, for n > N), the inequality a, < b, holds, then the convergence of the
series Z b, with positive terms implies the convergence of the series Z Gn,

n=1 n=1
with positive terms [11]. Then for £ > N the following correspondence takes
place 0 = “(’;ﬂ!@(mmﬂ < |f( ) ‘]2 |. Hence the series (9) is convergent
for all functions ¢(t) € KO. Thus it is proved that the series (8) converges
absolutely for all functions ¢(t) € SU K°, and the series (7) converges in the
sense indicated earlier.

The proved convergence of the series (7) implies the correctness of the
term-by-term application of the series (7) to any function from the main spaces
K" m>0,K,S.

Now let’s prove that the resulting series (7) is the original for the Laplace
transform (2). For this, the Laplace transform is applied to the series (7)

.~ /0 S
LY o0t — kAR | = > o Lo o
k=0 k=0 k=0
Let’s prove that the series
> r(k)
Z f k'<0) e—sk‘Am (16)
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converges to the known transform (2).

The series (16), taking into account the change of variables z = e~*4m  can
be written as (6), that is, it is an expansion of the function f(z) (3) in Taylor
series. According to the theorems [8] and the proved regularity of the function
f(2), it is derived that the series (16) converges to the function f(z) (3) with
the radius of convergence R = ¢, which corresponds to the entire range of the
variable |z| < 9.

The statement of the theorem is proved.

The approbation of the proposed method is done on the known transform.
The result of applying of the proposed method to the known transform gave
the same result to the previously known result [13]. The detailed verification
is given in Appendix A.

Let’s consider some examples of application of the proved theorem. Con-
sider the following functions ( when A > 0, a is a

1 1
1_efsA)o¢ and (1_;’_675.4)04

natural digit.

The Taylor series can be easily constructed for the functions f(z) = (=SE

and g(z) = (le)a:

f(z) =14 Y, elodtathol)

k=1
g(z) =1 —i—kzl (=1) o +,1,) (a+k=1) .k

According to theorem 1

L [(1} — [r= ] = L [f(2)]

1— e—sA)a
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Finally the following formulas are derived

(1_€7SA)O£

L [mtnys | = 80 + ;i ofetl) otk 1) 54 4)
P (17)

_ e —1)ka(a+1)...(a+k—1
L 1[W]zé(t)+kg( Volostl).(ath=1) 54 _ ; 4)

Let’s consider the transform that corresponds to the general function of
the form (1)

L
L fr(s)
- 1
() co+ KEL(s) (18)
The expression (18) can be rewritten in the following form
cor’(s) +a" ()K" (s) = fH(s) (19)

By the convolution theorem of originals the Volterra integral equation of
the second kind [6] is derived from (19)

cox(t) + /x(T)K(t —T1)dr = f(t) (20)
0

N
For the function of the form (1) f(t) = d(¢), K(t) = > ¢;d(t — A;). Since
i=1
these functions are equal to zero when ¢ < 0, the equation (20) can be written
using convolution as follows [10]

N
[coé(t) + Z cid(t — Ay) | xx(t) = 6(t) (21)
i=1

That is, finding the original z(t) is reduced to the solving of the convolution
equation (21). The solution of the convolution equation of the form a(z) *
y(z) = b(x) is uniquely determined by the formula y(x) = a=!(x) * b(z) in the
case when the inverse generalized function a~!(z) exists [10]. By the definition,
if the generalized function f(x) has its inverse function f~!(z), then [10]

FH@) * flo) = fla)* [} (@) = 8(x) (22)

From the above the following consequence can be formulated

Consequence. |cod(t) + > ¢;o(t — n;An) => fT()é(t —kAy,), where
i=1 k=0
the function f(z) has the form (3).
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The verification of the formulas (17) by the fulfilment of the equality (22)
for them is done in Appendix B.
The more general cases when A; = n;Aqg + m;Ag,ni,m; € Nyi =1, N for

m
some fixed numbers 1 < d,q < N,d # q or even when A; = Y ngjAg,ni; €
i=1 '

N, = 1,N,j = 1,m for some fixed numbers 1 < ¢; < N,j = 1,m,q; #

qx,J # k,j,k = 1,m can be also considered. For these cases the transform

(1) can be rewritten in the forms ~ L or 1

m
co+ > cie—s(niAgtmiaq) N 78]';1 nijAg;
= co+ Y cie
i=1

respectively. So, the following theorems take place.

S~ 3~ L9 F(0.0)
Theorem 2. L~} —t =% ﬁkiagld(t kA, —
co+ . ciems(niAatmiAq) k=01=0
=1
lA,), where f(z,¢) = ———~———. Here the single-valued functions of the
cot+ 25 cpz"k(Mk
k=1

sA

complez variable s e~ %4 and e=*44 are denoted as z and ¢ respectively.

Theorem 3. L~} L =
N —s X nijAg;
cot ) e I=!

i=1

S 1 ghtethaf(0,.,0)
Z 2 20(t — k1 Ay, — o — kmAy,,)
k km q1 m<iqgm /s
k1,....km=0 kl'km‘ 8211...82m
where 1
f(zl,...,zm) =

N m nkj.
co+ > e [l %
k=1 j=1

sA

Here the single-valued functions of the complex variable s e ~"% are denoted

as zj,7 =1,m.

The proof of these theorems is beyond the scope of this article.

Appendix A. Method validation on known originals

Consider the functions 17%%4 and {—=x when A > 0. From [13] it is
known that

L7t [16 SA] ch t—nA), [W] = i(—l)"é(t—nA) (A1)

n=0

Let’s show that the results derived from theorem 1 are consistent with the
known results (A.1).
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According to theorem 1

= B k=0 k=0 (A.2)
L1 {Hel, A} =[z=e=L"" ﬁ =L f(2)] =
= 5 50 - 1 [ £ 0| = caate-ka)
k=0 k=0 k=0

So, the known results (A.1) are equal to the results derived from theorem
1(A.2).

Appendix B. Verification of derived formulas using convolution

The fulfillment of the formula (22) for the functions (17) can be verified for
any fixed a. Let’s prove this for a = 2.

According to (17)

Lt [ﬁ] =0(t) + f (k+1)8(t — kA),
k=1 (B.1)

Consider the following convolution

([5@) —98(t — A) +8(t — 24)] = [ (t) + ioj (k +1)8(t — kA)} ,cp(t)) .
—ff §) —20(§ — A)+5(§*2A)]

X {(5( -+ kZ::l(k + 1)z — € — kA)] o(z)dzdé =
= J10(6) = 20(¢ ~ 4) + 8¢ — 24) [90(5) S e+ k:A)} dé —

k=1
= 0(0) — 2p(A) + p(24) + ké(k + 1)p(kA)—

—2 S k4 Dp((k+ DAY+ 5 (b + 1)p((k + 2)A) =
k=1 k=1

= 0(0) — 2p(A) + p(24) + é(k + 1)p(kA)—

=23 kp(kA) + 3 (k= 1)p(kd) =
= 0(0) +9(24) + 55 (1= K)p(kA) + 32 (k= Dp(kA) = 9(0) = (3(8), #(1)
So, it is proved that

[5(£) — 20(t — A) + 6(t — 24)] * +§: k+1)8(t — kA)| = a().
k=1
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The inequality [(5(t) + § (k+1)o(t — k:A)] *[0(t) —20(t —A)+0(t—24)] =
k=1

d(t) is proved similarly. So, the correctness of the first formula in (B.1) is
shown.
Consider the following convolution

([6(t) +20(t—A)+(t —2A)] [ (t) + Z( )k(k: +1)o(t — kA)} ,go(t)) =
—ff £) +26(¢ - A)+6(§—2A)]><
X [(5(90— )+k;1(— Ve(k +1)8(x — € — kA)} o(z)dzdé =
= 9(0) + 26(4) +£(24) + 3 (-4 (k + DiplhA)t
+2 k;(_l)k(k + Dp((k+1)A)+
+§31(—1)k(k F1)p((k+2)A)
= 0) + 20(A) + 6(24) + 5% (“1F(E + o (kA) -

k=1

=235 (<1Mk(kA) + 5 (1)~ (k) = 9(0) = (8(1). (1)

k=3

So, it is proved that

[6(t) + 20(t — A) + 6(t — 24)]

() + ) (D (k+1)5(t — kA) | = 6(t).
k=1
The inequality

+§: Bk + 1)8(t — kA) | # [0(t) + 26(t — A) + 6(t — 24)] = 8(t)
k=1

is proved similarly. So, the correctness of the second formula in (B.1) is shown.

3. CONCLUSION

1. The new method for the analytical inversion of the Laplace transform
for the functions of the certain structure is proposed. The proof of this method
is carried out.

2. The results derived by the new method of analytical inversion of Laplace
transform are compared with the formulas for the original functions known in
literature.



134 Zhuravlova Z. Yu.

3. Due to the use of the proposed method, the originals of new transforms
that are important for use in mechanics are derived.

2Kypasavosa 3. FO.
HoBui MIAXIO O AHAJIITUYHOI'O OBEPHEHHSA TIEPETBOPEHHA JIATIIIACA AJIA JEAKNX
BUIIAIKIB

Pesrome

IleperBopenns Jlannacy € KOpUCHUM iHCTPYMEHTOB Il PO3B’sI3aHHS NUHAMIYHHUX 33189 Te-
opii mpyzkuOCTi. TuM He MeHTI, TpobIeMa AHAITHIHOTO OOEpPHEHHSI TepeTBOpeHHs Jlammacy
JI0 CHIX TIip MOBHICTIO He PO3B’si3aHa. TOMY aKTyaJIbHUM € PO3IJISAL HOBUX METO/IIB, 33 JOIIOMO-
IOI0 IKMX MOKHA OTPHUMATH aHAJITHYHE IIOJIaHHS OPUTiHAJY 3a BiZJOMOIO TpaHC(HOPMAHTOIO.
Y naniit poboTi 3aIIPOIIOHOBAHO HOBUI METOJ aHAJITUIHOTO OOEpHEHHSI ITePETBOPEHHS
Jlamnacy st TpaHcOpPMAaHT IEBHOIO BUTVISIY, IO MICTATH y 3HAMEHHUKY €KCIIOHEHTH, sIKi
JIIHIRHO 3aJ/1eKaTh BiJl mapamerpa mepeTBopeHHs Jlarmracy. PosrisinyTo Bunajku CIiBBigHO-
ITeHb MiXK MMOKAa3HUKAaMM eKCIOHeHTH. JloBemeHo Teopemy, 3TiHO 3 SIKOIO TPAHCHOPMAHTA
po3BuUBaETHCH ¥ psif Teitstopa, i OpUriHAT OTPUMYETHCS NMUISXOM IMOYJIEHHOI'O 3aCTOCYBAaHHST
obepuenoro neperBopenHs Jlammacy. KopekTHicTh mousieHHOro 3acTrocyBaHHsI 0GEpPHEHOTO
neperBopenus Jlamtacy nosenena. IIpoBenena mepeBipka pe3yabTariB, IO OTPUMaHi 3 BHU-
KOPUCTaHHSIM HOBOI'O METOJy, 3 Bimomumu pasimie dopmynamu. OTpumani opuriHaau sif
rpancdopmanT Jlamracy, ski pasinie He 3yCTpidaiuch y JiTeparypi.
Kaowosi caosa: nepemeopenns Jlanaacy, anasimusne obeprenms, pozeurenmnsa 6 paou Tet-
A0pa, Y3a2anvHeni GyHKUil, 320pmKa.

Kypasaésa 3. FO.
HoBbIll TOAXO0A K AHAJIUTUYECKOMY OBPAIIEHUIO NTPEOBPA3OBAHUSA JIATIJIACA AJis1
HEKOTOPHIX CJIVUAEB

Pesrome

IIpeo6paszoBanue Jlamiaca sBJsieTCs MOJE3HBIM UHCTPYMEHTOM JJIsl PEIIEHUST JIMHAMUYIECKUX
3a/1a9 TEOPUHU yIpyrocTtu. 1eM HU MeHee, IpOHJIEMa aHAJIUTHIECKOrO obpaleHus: npeobpa-
3oBanusd Jlamiaca 0 CUX MO MOJHOCTBHIO HE pelreHa. [103ToMy akTyabHbBIM sIBJISIETCS PAC-
CMOTPEHME HOBBIX METOJIOB, C IIOMOIIbI0O KOTOPBIX MOXKHO IOJIyYUTH AHAJUTUYECKOE IIPE/I-
CTaBJIEHNE OPUTMHAJIA 110 U3BECTHON TpaHCc(OpMaHTe.

B mannoit paboTte mpetoKeH HOBBIN METOJ, AHAJTUTHIECKOTO ObpaleHus: mpeobpa3oBa-
Hus Jlannaca st TpancOpMaHT OIPEIeIEHHOrO BIA, COJEPXKAIUX B 3HAMEHATEJIe KCIIO-
HEHTBI, JINHEHHO 3aBUCSINTE OT HapamMerpa npeobpasoBanus Jlamtaca. Paccmorpenst ciaydan
COOTHOIIEHUN MEXKJy TOKa3aTe/sIMA KCHOHEHTHhI. Jloka3aHa Teopema, COIJIACHO KOTOPOM
TpaHchOpMaHTa PACKJIA/IbIBAETC B PsiJi Teiijiopa, U OPUTrHHAJ IIOJIYy9aeTCs IIyTEM [TOYJIeH-
HOrO MpuUMeHeHusi 06paTHOro npeobpazopanus Jlammaca. KoppekTHOCTh MOYIEHHOTO TTpUMe-
HeHusi obpaTHOro mpeobpa3oBanus Jlamraca nokasana. IIpoBemena mpoBepka pe3yabTATOB,
[IOJIy Y€HHBIX C MCIIOJIb30BaHMEM HOBOI'O METOa, C U3BeCTHbIMU paHee (popmysiamu. [Tosyqe-
HBI OPUTHHAJIBI OT TpaHcdopMmaHT Jlaniaca, paHee He BCTpEUYABINUECS B JINTEPATYPE.
Karoueswie caosa: npeobpazosanue Jlanaaca, anasumuseckoe obpawenue, pasirodicerue 6 psi-
ow Tetinopa, 0606weHHbIE GYHKUUU, CEBEPMEKD.
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