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1. INTRODUCTION

Meldrum J. |2] briefly considered one form of commutators of the wreath
product A? B. In order to obtain a more detailed description of this form,
we take into account the commutator width (cw(G)) as presented in work of
Muranov A. [1].

As well known the first example of a group G with cw(G) > 1 was given
by Fite [4]. The smallest finite examples of such groups are groups of order
96, there’s two of them, nonisomorphic to each other, were given by Guralnick
[23].

We deduce an estimation for commutator width of wreath product of groups
Cy, ! B taking in consideration a cw(B) of passive group B. A form of com-
mutators of wreath product A B that was shortly considered in [2]. The
form of commutator presentation |2] is proposed by us as wreath recursion [9]
and commutator width of it was studied. We impose more weak condition
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on the presentation of wreath product commutator then it was imposed by J.
Meldrum.

In this paper we continue a researches which was stared in [16; 17]. We
find a minimal generating set and the structure for commutator subgroup of
SylgAQk .

A research of commutator-group serve to decision of inclusion problem [5]
for elements of Syla Ayk in its derived subgroup (SylaAyr)'. It was known that,
the commutator width of iterated wreath products of nonabelian finite simple
groups is bounded by an absolute constant [3; 4]. But it was not proven that

k

commutator subgroup of @ C,, consists of commutators. We generalize the
i=1

passive group of this wreath product to any group B instead of only wreath

product of cyclic groups and obtain an exact commutator width.

Also we are going to prove that the commutator width of Sylows p-
subgroups of symmetric and alternating groups p > 2 is 1.

The (permutational) wreath product H G is the semidirect product HX X
G, where G acts on the direct power HX by the respective permutations of the
direct factors. The group C), or (Cp, X) is equipped with a natural action by
the left shift on X = {1,...,p}, p € N. As well known that a wreath product
of permutation groups is associative construction.

The multiplication rule of automorphisms g, A which presented in form of
the wreath recursion [6] g = (g9(1), 92 - - - > 9(a))Tg> b = (h(1y; P2y, -+ - hay)on,
is given by the formula:

9" =(90) "o, (1)): 9@ (o4(2))5 - - > Id) (g (4)))TgTh-

We define o as (1,2,...,p) where p is defined by context.

The set X* is naturally a vertex set of a regular rooted tree, i.e. a connected
graph without cycles and a designated vertex vy called the root, in which two
words are connected by an edge if and only if they are of form v and vz, where
ve X" xe X. The set X™ C X* is called the n-th level of the tree X™* and
X9 = {vg}. We denote by vj; the vertex of X7, which has the number . Note
that the unique vertex vy ; corresponds to the unique word v in alphabet X.
For every automorphism g € AutX™* and every word v € X* define the section
(state) g(,) € AutX™ of g at v by the rule: g(,)(z) =y for z,y € X* if and only
if g(vz) = g(v)y. The subtree of X* induced by the set of vertices U¥_j X7 is
denoted by X*. The restriction of the action of an automorphism g € AutX*
to the subtree X! is denoted by 9wyl xm- A restriction g, )| xn is called the
vertex permutation (v.p.) of ¢ in a vertex v;; and denoted by g;;. We call the
endomorphism «l, restriction of ¢ in a vertex v [6]. For example, if | X| = 2
then we just have to distinguish active vertices, i.e., the vertices for which a|,
is non-trivial.
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Let us label every vertex of X!, 0 < 1 < k by sign 0 or 1 in relation to
state of v.p. in it. Obtained by such way a vertex-labeled regular tree is an
element of AutX™*. All undeclared terms are from |[7; §|.

Let us make some notations. For brevity, in form of wreath recursion we
write a commutator as [a,b] = aba~'b~! that is inverse to a~'b~'ab. That
does not reduce the generality of our reasoning. Since for convenience the
commutator of two group elements a and b is denoted by [a,b] = aba=1b!,
conjugation by an element b as

a’ = bab~ !,
We define G}, and By, recursively i.e.

B1 =05, By = By_110 for k > 1,
G1 = (e), Gr, = {(91,92)7™ € By, | g192 € Gj—1} for k > 1.

k
Note that By = Cs.

The commutat(;r Jlength of an element g of the derived subgroup of a
group G, denoted clG(g), is the minimal n such that there exist elements
ZTlyeeoyTpyYly---,Yn in G such that g = [x1,y1] ... [zn,yn]. The commutator
length of the identity element is 0. The commutator width of a group G, de-
noted cw(G), is the maximum of the commutator lengths of the elements of its
derived subgroup [G, G|. We denote by d(G) the minimal number of generators
of the group G.

2. MAIN RESULTS

Commutator width of Sylow 2-subgroups of Aqx and Sox.

The following Lemma imposes the Corollary 4.9 of [2]| and it will be deduced
from the corollary 4.9 with using in presentation elements in the form of wreath
recursion.

Lemma 1. An element of form (r1,...,1p—1,7p) € W = (B1Cp)" iff product
of all r; (in any order) belongs to B', where p € N, p > 2.

Proof. More details of our argument may be given as follows.
w=(r1,r2,...,"p—1,7p),

where r; € B. If we multiply elements from a tuple (r1,...,7r,—1,7,), where
= higa(i)h;bl(i)ga_bz—l(i)v h, g € B and a,b € C), then we get a product

p p
11
T :l | ri = | | h’iga(i)hab(i)gaba—l(i) € B, (1)
=1 i=1
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where is a product of corespondent commutators. Therefore, we can write

Tp = T 1 7’1_11'. We can rewrite element € B’ as the product z =
m

H [fj7gj]7 m < C’U)(B)

j=1

Note that we impose more weak condition on the product of all r; to belongs
to B’ then in Definition 4.5. of form P(L) in [2], where the product of all r;
belongs to a subgroup L of B such that L > B'.

In more detail deducing of our representation constructing can be re-
ported in following way. If we multiply elements having form of a tuple
(ri,...,rp—1,7p), Where r; = higa(i)hgbl(i)g;bz,l(i), h,g € B and a,b € C,,
then in case cw(B) = 0 we obtain a product

p p
H T = H higa 7')hab(7, aba 1(3) € B (2)
1=1 1=1

Note that if we rearrange elements in (1) as

hlhflglgglhghglglggl...hph;;lgpgp_l,

then by the reason of such permutations we obtain a product of corespondent
commutators. Therefore, following equality holds true

p p
thga iy Iy = L1 higihi 9 w0 = [T bty ' gigi e € B, (3)
=1 =1

where xq, z are a products of corespondent commutators. Therefore,
(r1y.oyrp_1,mp) EW'iffrpy-...-ry -1y, =2 € B'. (4)

Thus, one element from states of wreath recursion (rq,...,rp,—1,7p) depends on
p

rest of r;. This dependence contribute that the product [] r; for an arbitrary
j=1
sequence {r; }5:1 belongs to B’. Thus, r, can be expressed as:

—1 -1

Denote a j-th tuple, which consists of a wreath recursion elements,
by (rj,,7js,--,75,).  Closedness by multiplication of the set of forms
(r1,...,mp—1,7p) € W = (B1Cp)" follows from

k p
(rjl ... rjpflrjp) = H HTJ'Z, =RiRs...R; € B/, (5)
J=li=

—.

Jj=1
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p
where 7; is i-th element from the tuple number j, R; = H rii, 1 <7< k.

—1
As it was shown above R; = H rji € B'. Therefore, the product (5) of R,

j €{1,...,k} which is similar to the product mentioned in [2], has the property
RiRs...R;, € B’ too, because of B’ is subgroup. Thus, we get a product of
form (1) and the similar reasoning as above are applicable.

Let us prove the sufficiency condition. If the set K of elements satisfying
the condition of this theorem, that all products of all r;, where every i occurs
in this forms once, belong to B’, then using the elements of form

(r1,e, ...,e,rl_l), (e e, ...,e,ri,e,ri_l), -

(e, e, ...,e,rp_l,r;_ll), (e,€,.cs €172 oo - Tp_1)

we can express any element of form (rq,...,7p—1,7p) € W = (BU1Cp). We
need to prove that in such way we can express all element from W and only
elements of W. The fact that all elements can be generated by elements of K
follows from randomness of choice every r;, i < p and the fact that equality
(1) holds so construction of r, is determined.

Lemma 2. For any group B and integer p > 2 if w € (B2 C)p)" then w can be
represented as the following wreath recursion

k
W= (11,72, . Tp 1,7 . Hf],g]
J=1

where 1,...,1p—1, fj,9; € B and k < cw(B).
Proof. According to Lemma 1 we have the following wreath recursion
W= (1,72, ..., Tp—1,Tp),

where r; € B and rp_171p_2...797171, = T € B’. Therefore we can write Tp =

ry L. .r;jlx. We also can rewrite element € B’ as product of commutators

k
= Hl[fj,gj] where k < cw(B).
j=

Lemma 3. For any group B and integer p > 2 if w € (B1C}) is defined by
the following wreath recursion

w = (rl,rg,...,rp_l,rl_l ...rp__ll[f,g]),

where 11,...,7p—1, f, g9 € B then we can represent w as the following commu-
tator

w=[(a11,...,a1p)0,(az1,...,a2,)l,
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where

aj;=e, forl<i<p-—1,

)

11
agy = (f~1)" e,

ag; = ri—1a2;-1, for2 <i <p,
1p=4d

Proof. Let us to consider the following commutator

k=(a11,...,a1p)0 - (a21,...,02p) " (aizl,, af&, e aizl)fl)o'_l . (a;&, . ,a;’;)
::(a3ﬂa"‘7a3p)7
where

az; = G1,i42 14 (i mod p)aiiag‘,}-
At first we compute the following
az; = al,iazi“ai%aii = ag,i_,_la;; = riagyia;; =r;, for 1 <i<p-—1.
Then we make some transformation of az:

-1 -1
a37p = alvpa271a1,pa2,p

—1 -1 -1
= (az,1a91)a1,paz1a; a5,

= ag1azy, a1play,,

= a2,1a2_,;1702,p[a2_&7 al,p]az_,}g
= (@,pa;j)—l[(a;’})az’p, ayy’]

-1
= (agpaz;) ' [(ag7) 27?21, af%?].

Now we can see that the form of the commutator & is similar to the form of w.
Let us make the following notation

r=rp_1...71.
We note that from the definition of as; for 2 < i < p it follows that
r; = a27i+1a2_;, for1<i<p-—1.
Therefore

—1 —1 —1 —1
= (a2pay,_1)(a2p-1a3, o) ... (az23a;5,)(az2a; ;)

-1
= a2,pQg q-
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And then
as a; DY t=Y"t=p1 7L
(az,pagy) 1

And now we compute the following

(ag by roat = (((f~1)1 )Ty = (f07 Ny =

)

az,p

aiy = (g°2r) 20 = g.
Finally we conclude that
agp =1y lf gl

Thus, the commutator k is presented exactly in the similar form as w has.
For future using we formulate previous Lemma for the case p = 2.

Corollary 1. For any group B if w € (B! Cs)" is defined by the following
wreath recursion

w = (r1,77 [, 9)),
where r1, f,g € B then we can represent w as commutator
w = [(e,a12)0, (az,1,a2,2)],
where
azy = (fH,
a2,2 = T102,1,
a2 = ga;’;-
Lemma 4. For any group B and integer p > 2 inequality
w(BCp) < max(1, cw(B))
holds.

Proof. We can represent any w € (B1C})" by Lemma 1 with the following
wreath recursion

w = (Tl,TQ, cee 7rp—17T1_1 cee ,7";_11 H[fj?gj])

k
:(Tlar27"'7rp—l)rfl"'7 p 1flagl H ef] ( ’7€agj)]7
j=2

where r1,...,7p—1, fj,9; € B and k < cw(B). Now by the Lemma 3 we can
see that w can be represented as a product of max(1, cw(B)) commutators.
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Corollary 2. If W = Cp, ... 0 Cp, then cw(W) =1 for k > 2.

Proof. If B = Cp, 1C,, , then taking into consideration that cw(B) >
0 (because Cp, 1 Cp,_, is not commutative group). Since Lemma 4 implies
that cw(Cp, 1 Cp,_,) = 1 then according to the inequality cw(Cyp, 1 Cp,_, 2
Cpy._,) <max(1l, cw(B)) from Lemma 4 we obtain cw(Cp, 1 Cp, , 1Cp,_,) = 1.
Analogously if W = C),1...0C),, and supposition of induction for Cp, .. .1C),
holds, then using an associativity of a permutational wreath product we obtain
from the inequality of Lemma 4 and the equality cw(Cp, ¢...1Cp,) = 1 that
cw(W) = 1.

We define our partial ordered set M as the set of all finite wreath products
of cyclic groups. We make of use directed set N.

k
Hy= G, (6)
=1

Moreover, it has already been proved in Corollary 3 that each group of

k k
the form ¢ Cp, has a commutator width equal to 1, ie cw( ! Cp,) = 1. A

i=1 i=1
partial order relation will be a subgroup relationship. Define the injective
k k+1
homomorphism f, ;41 from the ‘2161,2. into '21 Cp, by mapping a generator of
1= =

active group Cp, of Hj in a generator of active group Cp, of Hyyi. In more
details the injective homomorphism fy, 41 is defined as g — g(e, ..., ), where

k k+1
a generator g € 1 Cp,, g(e,...,e) € 1 Cp,.
i= i=1
k
Therefore this is an injective homomorphism of Hj, onto subgroup ¢ Cp,

=1

of Hka_;’_l.

k k
Corollary 3. The direct limit hg ! Cp, of direct system <fk,j, ! Cp,-> has
i=1 =1

commutator width 1.

Proof. We make the transition to the direct limit in the direct sys-
k k
tem <f;w-, 0 Cpi> of injective mappings from chain e — ... — 1 Cp, —
=1 =1
k+1 k+2
0 Cp = U Cpy =
i=1 i=1

Since all mappings in chains are injective homomorphisms, it has a triv-
ial kernel. Therefore the transition to a direct limit boundary preserves the
property cw(H) = 1, because each group Hj from the chain endowed by
cw(Hy) = 1.



Minimal generating set of the commutator subgroup of sylow 2-subgroups . .. 105

k
The direct limit of the direct system is denoted by lim ¢ Cp, and is defined
i=1

as disjoint union of the Hj’s modulo a certain equivalence relation:

|~

IIH:c
k i=1

lim ? C .
1 I .= ~-
ﬂizl i

k
Since every element g of hﬂ ! Cp, coincides with a correspondent element
i=1
from some Hj, of direct system, then by the injectivity of the mappings for g
k

k
the property cw( ! Cp,) =1 also holds. Thus, it holds for the whole lim 1 Cp,.
i=1 =1

Corollary 4. For prime p and k > 2 commutator width cw(Syl,(Syr)) = 1

and for prime p > 2 and k > 2 commutator width cw(Syl,(Ayk)) = 1.

k
Proof.  Since Sylp(Spe) ~ ¢ Cp see [10; 11], then cw(Syly(S,r)) = 1.
i=1

As well known in case p > 2 we have Syl,Spe ~ Syl,Ayx see [16; 19], then
cw(Syly(Ape)) = 1.

Proposition 1. The following inclusion B), < G}, holds.

Proof. Induction on k. For k = 1 we have B; = Gj, = {e}. Let us fix
some g = (g1,92) € B,. Then g1g2 € B;_; by Lemma 1. As B, ;| < Gj_; by
induction hypothesis therefore g1go € Gi_1 and by definition of G it follows
that g € Gj.

Corollary 5. The set Gy, is a subgroup in the group Bj.

Proof. According to recursively definition of Gy and By, where G =
{(g1,92)7 € B | 9192 € Gr_1} k > 1, G}, is subset of By with condition g;gs €
Gp_1. It is easy to check the closedness by multiplication elements of Gy, with
condition g1g2, h1he € Gi_1 because G_1 is subgroup so gigohi1he € Gi_1
too. A condition of existing inverse be verified trivial.

Lemma 5. For any k > 1 we have |G| = |Bg|/2.

Proof. Induction on k. For k = 1 we have |G1| = 1 = |B1/2|. Every
element g € G can be uniquely write as the following wreath recursion

g = (glaQZ)Tr = (gl,gflx)ﬂ'

where g1 € Br_1, x € Gi_1 and m € (5. Elements g1, x and 7 are independent
therefore |G1€’ = 2’Bk_1| . ’Gk_1| = 2|Bk_1| . |Bk_1|/2 = ‘Bk|/2

Corollary 6. The group Gy, is a normal subgroup in the group By, i.e. Gy <IBy.
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Proof. There exists normal embedding (normal injective monomorphism)
¢ : G — By [20] such that Gy < Bg. Indeed, according to Lemma index
|Br : G| = 2so it is normal subgroup that is quotient subgroup 5% /¢, ~ G..

Theorem 1. For any k > 1 we have Gy, ~ SylaAqk.

Proof. Group C; acts on the set X = {1,2}. Therefore we can recursively
define sets X* on which group By acts X! = X, X*¥ = X*~1 x X for k>1. At
first we define Sor = Sym(XF*) and A = Alt(X*) for all integer k& > 1. Then
G < B < SQk and AQk < SQk.

We already know [16] that By, o~ Syla(Syr). Since |Agr| = [Sgr|/2 therefore
|SylaAok| = |SylaSer|/2 = |Bg|/2. By Lemma 2 it follows that |SylaAgk| =
|Gg|. Therefore it is left to show that Gy < Alt(XF¥).

Let us fix some g = (g1, g2)0" where g1,92 € Bx_1, i € {0,1} and g1g2 €
Gr_1. Then we can represent g as follows

)

g = (919276) : (951792) : (676’ )U .

In order to prove this theorem it is enough to show that

(gnga 6)’ (951792)3 (6, €, )U € Alt(Xk)

Element (e, e, )o just switch letters x; and xo for all x € X*. Therefore
(e,e,)o is product of |X*~1| = 25=! transpositions and therefore (e,e,)o €
Alt(XF).

Elements g L and go have the same cycle type. Therefore elements (95 Le)
and (e, g2) also have the same cycle type. Let us fix the following cycle decom-
positions

(92 €)=01... 0on,

(e,g2) =71 ... Tn.

Note that element (g5 ', e) acts only on letters like 1 and element (e, go) acts
only on letters like xo. Therefore we have the following cycle decomposition

<92_1792):0_1'--.'0'71'7T1'...'7Tn.

So, element (g, 1,92) has even number of odd permutations and then
(951, g2) € Alt(XF).

Note that g1gs € Gr_1 and Gp_; = Alt(X*~1) by induction hypothesis.
Therefore g1go € Alt(X*1). As elements g1go and (g1go,e) have the same
cycle type then (g1go,¢) € Alt(XF).
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As it was proven by the author in [16] Sylow 2-subgroup has structure
By_1 X Wx_1, where definition of Bj_; is the same that was given in [16].

Recall that it was denoted by Wj,_; the subgroup of AutX ! such that has
active states only on X*=1 and number of such states is even, i.e. Wjy_; <
Sta, (k—1) [6]. It was proven that the size of Wj,_; is equal to 22" 1 s
and its structure is (Cg)zk_l_l. The following structural theorem characterizing
the group Gy was proved by us [16].

Theorem 2. A mazimal 2-subgroup of AutX¥ that acts by even permutations
on X* has the structure of the semidirect product G, ~ Bi_1 X Wi_1 and
isomorphic to SylayAgr.

Note that Wj_ is subgroup of stabilizer of Xk1ie Wiy < St purxtr (k—
1)< AutX ¥ and is normal too Wj,_1 < Aut X ¥ because conjugation keeps a
cyclic structure of permutation so even permutation maps in even. Therefore
such conjugation induce an automorphism of Wi_1 and Gy >~ Bp_1 X Wi_1.

Remark 1. As a consequence, the structure founded by us in [16] fully con-
sistent with the recursive group representation (which used in this paper) based
on the concept of wreath recursion [9].

Theorem 3. Elements of By, have the following form B;, = {[f,l] | f € B, €
Gy ={ll, f]| f € Bk,l € Gy}

Proof. It is enough to show either B = {[f,l] | f € By,l € Gy} or
B; =A{[l, f] | f € By, € Gy} because if f = [g, h] then f~1 = [h, g].

We prove the proposition by induction on k. For the case £ = 1 we have
Bj = (e).

Consider case k > 1. According to Lemma 2 and Corollary 1 every element
w € By, can be represented as

w = (Tlvrfl[fag])

for some r1, f € Bi_1 and g € Gi_1 (by induction hypothesis). By the Corol-
lary 1 we can represent w as commutator of

(67a1,2)(f € Bk and (a271,a272) S Bk,

where

1

az1 = (f_l)rf )
22 = T1021,

—1
aip = g"22.

If g € Gi—1 then by the definition of G and Corollary 6 we obtain (e, a;2)o €
Gg.
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Remark 2. Let us to note that Theorem 8 improve Corollary 4 for the case
SyleQk.

Proposition 2. If g is an element of the group By, then g? € By.

Proof. Induction on k. We note that By, = Bji_1 { Cy. Therefore we fix
some element

9= (91,92)0" € By_11Cs,

where g1,g2 € Bj_1 and i € {0,1}. Let us to consider g2 then two cases are
possible:

9* = (91, 93) or g° = (9192, 9291)

In second case we consider a product of coordinates gigs - g2g1 = g5 g3x. Since
according to the induction hypothesis g? € By, i < 2 then gi1g2 - g2g1 € B},
also according to Lemma 1 = € Bj. Therefore a following inclusion holds
(9192, 9291) = g* € Bj.. In first case the proof is even simpler because 92,95 €
B’ by the induction hypothesis.

Lemma 6. If an element g = (g1,92) € G}, then gi,92 € Gir—1 and gig2 €
B;_,.
k—1

Proof. As Bj < Gy, therefore it is enough to show that g, € G_1 and
g192 € By._,. Let us fix some g = (g1, 92) € G}, < By. Then Lemma 1 implies
that g1g2 € By,_;.

In order to show that g1 € Gj_1 we firstly consider just one commutator
of arbitrary elements from Gy

f=(f1, f2)o, h = (h1,h2)7 € Gy,
where f1, fo,h1,hy € Bp_1, o,m € Cy. The definition of G} implies that
f1f2, hihe € Gy_1.
If g = (g1, 92) = [f, 1] then
g1 = fihif; 'yt
for some i, j, k € {1,2}. Then
g1 = fihifi(f;7 )2 he(hi)? = (fufy) (hahw)x(f; Ry )2,

where z is product of commutators of f;, h; and f;, hy, hence z € B)_;.

It is enough to consider first product ff;. If j = 1 then f? € B, _, by
Proposition 2 if j = 2 then f; fo € G}_1 according to definition of G, the same
is true for h;hy. Thus, for any ¢, 7, k it holds f1f;, hihr € Gi—1. Besides that



Minimal generating set of the commutator subgroup of sylow 2-subgroups . .. 109

a square ( fj_lh,;l)2 € B, according to Proposition 2. Therefore g1 € Gr_1

because of Proposition 2 and Proposition 1, the same is true for gs.
Now it lefts to consider the product of some f = (f1, f2),h = (h1,h2),
where f1,h1 € Gy—1, fih1 € Gi—1 and fifa, hiho € B,

fh = (fih1, fahs).

Since f1fo, hiho € B,’ﬁ_1 by imposed condition in this item and taking into
account that fihifaho = fifohihox for some x € B, then fihy faho € By,
by Lemma 1. Other words closedness by multiplication holds and so according
Lemmal we have element of commutator G.

In the following theorem we prove 2 facts at once.

Theorem 4. The following statements are true.
1. An element g = (g1, 92) € G}, iff 91,92 € Gx—1 and gi1g2 € By._.

2. Commutator subgroup G coincides with set of all commutators for k > 1
Gy =A{lfi, fol | fr € Gy, f2 € G}

Proof. For the case k = 1 we have G| = (e). So, further we consider the
case k > 2.

Sufficiency of the first statement of this theorem follows from the Lemma 6.
So, in order to prove necessity of the both statements it is enough to show that
element

w = (rl,rl_lx),

where r1 € Gp_1 and © € Bj_,, can be represented as a commutator of
elements from Gy. By Proposition 3 we have x = [f, g| for some f € Bj_; and
g € Gi_1. Therefore

w = (T17T;1[f7 g])
By the Corollary 1 we can represent w as a commutator of

(6,(1172)0 c Bk and (ag,l,agg) S Bk,

_ —1
where as; = (f~1)" 1,a272 = riagi,a12 = ¢*22. It only lefts to show that
(e,a12)0, (az,1,a22) € Gj. Note the following

1
ar o = g*2 € Gi_y by Corollary 6.

azpazz = aziriazy = ri[ri,az21ja3; € Gi—1 by Proposition 1 and
Proposition 2.
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So we have (e,a12)0 € Gy, and (az1,a22) € Gy, by the definition of Gy.

Proposition 3. For arbitrary g € G}, the inclusion g> € G/, holds.

Proof. Induction on k: elements of G? have form (0)? = e, where

o = (1,2), so the statement holds. In general case, when k > 1, the elements
of G}, have the form g = (g1, 92)0%, 91,92 € Bx_1, i € {0,1}. Then we have
two possibilities: g% = (47, 95) or ¢* = (9192, 9291)-

Firstly we show that g7 € Gy_1,93 € Gg_1. According to Proposition 2,
we have g7, g5 € B),_, and according to Proposition 1, we have B} _; < G
then using Theorem 4 g2 = (g2, g3) € Gy.

Consider the second case g? = (9192, g291). Since g € Gy, then, according
to the definition of Gy we have that g1go € Gi_1. By Proposition 1, and
definition of G, we obtain

9201 = 919295 197 " 9201 = q192[95 1, 97 '] € G1,
9192 9291 = 919591 = 9193195 2. 97 '] € Bj,_1.

Note that g7,g5 € Bj._, according to Proposition 2, then g%gg[gz_Q,Qf] €
Bj_,. Since gi1g2 - g2g1 € Bj_, and g192,9201 € Gj—_1, then, according to
Lemma 6, we obtain ¢* = (g192, g291) € G},

Statement 1. The commutator subgroup is a subgroup of Gz ie. G < Gi.

Proof. Indeed, an arbitrary commutator presented as product of squares.
Let a, b € G and set that © = a, y = a”'ba, z = a~'b~'. Then 2%y?2? =

c12(cz_1l)a)2(CL_ll)_l)2 = aba"'b!, in more detail: a2(a_lba)2(a_1b_1)2 =
ala=tbaa"tba a b a7t =
= abbb~ta"'b™! = [a,b]. In such way we obtain all commutators and their

products. Thus, we generate by squares the whole G’j.

Corollary 7. For the Syllow subgroup (SylaAqr) the following equalities
Sylh Agr = (SylaAgr)?, ®(SylaAgr) = SylbAgk, that are characteristic proper-
ties of special p-groups [22], are true.

Proof.  As well known, for an arbitrary group (also by Statement 1)
the following embedding G’ <« G2 holds. In view of the above Proposition
3, a reverse embedding for Gy is true. Thus, the group SyloAsr has some
properties of special p-groups that is P’ = ®(P) [22] because G? = G}, and so
O (SylaAgr) = Sylh(Agr).

Corollary 8. Commutator width of the group SylaAqw equals to 1 for k > 2.

It immediately follows from item 2 of Theorem 4.
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3. MINIMAL GENERATING SET

For the construction of minimal generating set we used the representation
of elements of group G} by portraits of automorphisms at restricted binary
tree AutX¥*. For convenience we will identify elements of G}, with its faithful
representation by portraits of automorphisms from Awt X #.

We denote by A|; a set of all functions a;, such, that [e,... e, a;,e,...] €
[A];. Recall that, according to |21], I-coordinate subgroup U < G is the fol-
lowing subgroup.

Definition 1. For an arbitrarry k € N we call a k—coordinate subgroup U < G
a subgroup, which is determined by k-coordinate sets [U];, I € N, if this subgroup
consists of all Kaloujnine’s tableauzr a € I for which [a); € [U];.

We denote by Gg(l) a level subgroup of Gy, which consists of the tuples of
v.p. from X', I < k—1 of any a € G. We denote as Gj,(k — 1) such subgroup
of G}, that is generated by v.p., which are located on X*~1 and isomorphic to
Wi_1. Note that G(1) is in bijective correspondence (and isomorphism) with
l-coordinate subgroup [U]; [21].

For any v.p. gy in v of X! we set in correspondence with g;; the permu-
tation ¢ (gi;) € S2 by the following rule:

o(gii) = { (L,2), i g e (7)

e, if g;=ce.

Define a homomorphic map from Gg(l) onto Sz with the kernel consisting
of all products of even number of transpositions that belongs to G (). For
instance, the element (12)(34) of G (2) belongs to kery. Hence, ¢ (g;;) € Sa.

Definition 2. We define the subgroup of I-th level as a subgroup generated by
all possible vertex permutation of this level.

Statement 2. In G}/, the following k equalities are true:

2l
[Telw)=e 0<i<k-1. (8)
=1

For the case i = k — 1, the following condition holds:

ok—2 ok—1
[[eto)= II elo-)=e (9)
7=1 j=2k=241

Thus, G’} has k new conditions on a combination of level subgroup ele-
ments, except for the condition of last level parity from the original group.
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Proof. Note that the condition (8) is compatible with that were founded
by R. Guralnik in [23], because as it was proved by author [16] Gx_1 ~ Bj_2 %
Wi._1, where Bj_o ~ k22C§2).
i=1

According to Property 1, G’ < G2, so it is enough to prove the statement
for the elements of Gi. Such elements, as it was described above, can be
presented in the form s = (s, ...,591)0, where 0 € G;_; and s;; are states
of s € Gy in vy, i < 2. For convenience we will make the transition from
the tuple (sq1, ..., Sj9t) to the tuple (g1, ..., gj9t). Note that there is the trivial
vertex permutation glzj = e in the product of the states s;; - s;.

Since in G'; v.p. on X© are trivial, so ¢ can be decomposed as ¢ =
(011, 021), where 091, 092 are root permutations in v1; and vj9.

Consider the square of 5. So we calculate squares ((s;1, 812, ..., So1-1) 0)2.
The condition (8) is equivalent to the condition that s? has even in-

dex on each level. Two cases are feasible: if permutation ¢ = e, then
(511, 812, vy Spo1-1) 0)* = (5715 7y s Sti—1) €, SO after the transition from
(3121, sl22, ey SIQQZ,l) to (glzl, gl22, ...,9?2,,1), we get a tuple of trivial permutations
(e, ...,e) on X!, because ngj = e. In general case, if 0 # e, after such
transition we obtain (gllgla(2)7 s glnglglg(%l)) o2, Consider the product
of form

2l

H Qo(gljglo(j))a (10)

j=1
where o and g;;9,(;) are from (g”glg(g), . 9121_1gl0(21_1)> a2

Note that each element g;; occurs twice in (10) regardless of the per-

mutation o, therefore considering commutativity of homomorphic images
2! 2!

o(gij), 1 <5 < 2! we conclude that [] o(95910()) = 11 (p(g?j):e, be-
j=1 j=1

ol

cause of glzj = e. We rewrite [] gp(gfj) = e as characteristic condition:
j=1

ol—1 ol

plag) = 11 #lg;) =e.
j=1 j=2=141

According to Property 1, any commutator from G’y can be presented as a
product of some squares s2, 5 € Gy, 5 = ((S11, ..., §191)7 ).
21
A product of elements of G (k — 1) satisfies the equation [] ¢(gi;) = e,

7=1
because any permutation of elements from X¥, which belongs to Gy, is even.
Consider the element s = (5g_1,1, ., §_1 9¢—1)0, Where (x_1,1, ..., Sp_1.26-1) €
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Gp(k—1), 0 € Gi_1. If go1 = (1,2), where go1 is root permutation of o, then

5% = (SK—1,15k—10(1)s > Sk—1,(20-1)Sk—1,0(28-1)), Where o(j) > 2871 for j <
21@71
2k=1 and if j < 28~1 then o'(j) > 2871, Because of [[ ¢(gk—1,) = e in Gy and
j=1
2k72
the property o(j) < 25! for j > 251 then the product [] O(Ik—1,j9%—1,0(7))
j=1
of images of v.p. from (gr—1,19k—1,06(1)s s Jr—1,(25-1)9k—1,0(26-1)) 18 equal to
2k—1 2k—1 2k—1
[T #(gk-1,) =e. Indeedin [] ¢(gr—1,;) and asin [] cp(gk_ljjgk_l,a(j)) are
j=1 Jj=1 J=1

the same v.p. from X*~1 regardless of such o as described above.
The same is true for right half of X*~1. Therefore the equality (9) holds.

2k71

Note that such product [] ¢(gx—1,;) is homomorphic image of (g;19,5(1), -+

7j=1
91,21 910(21y), Where I =k — 1, as an element of G (1) after mapping (7).

If go1 = e, where go1 is root permutation of ¢ then o can be decomposed as
o = (o011, 012), where 011, 012 are root permutations in v;; and vi2. As a result

52 has a form ((811310(1)7 - 510(21—1))0%, (8120141 810(21-141) 5 -+ 81(21)810(21))05),
where | = k—1. As a result of action of o1 all states of {-th level with number
1< < 2k=2 permutes in coordinate from 1 to 28=2 the other are fixed. The
action of o1 is analogous.

It corresponds to the next form of element from GJ (1)

(9l19101(1)> e glal(21*1))7 (912171+19102(2171+1)7 ) 9z(2l)9102(21))-

Therefore the product of form

2k72 Qkfl
H Qo(gkfl,jgla(j)) = H W(ngl,j) =6
j=1 j=2k=241

because of g7, ; = e. Thus, characteristic equation (9) of k — 1 level holds.

The conditions (8), (9) for every s2, s € G}, hold so it holds for their product
that is equivalent to conditions hold for every commutator.

Definition 3. We define a subdirect product of group Gi_1 with itself by equip-
ping it with condition (8) and (9) of index parity on all of k — 1 levels.

Corollary 9. The subdirect product Gp_1 X Gy_1 is defined by k — 2 outer
relations on level subgroups. The order of Gp_1 W Gr_1 is 92" —k=2,

Proof. We specify a subdirect product for the group Gi_1 X Gr_1 by
using (k — 2) conditions for the subgroup levels. Each Gj_; has even index
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on k — 2-th level, it implies that its relation for [ = k£ — 1 holds automatically.
This occurs because of the conditions of parity for the index of the last level is
characteristic of each of the multipliers Gi_1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group Gi_1 X Gi_1, there
are obvious only k& — 2 outer conditions on subgroups of levels. Any of such
conditions reduces the order of Gi_1 X Gg_1 in 2 times. Hence, taking into
account that the order of Gj_q is 22]6_1*2, the order of Gy_1 W G_1 as a

2
subgroup of G_1 X Gi_1 the following: |Gx_1 X Gp_1| = (22]%1_2) 2k=2 =

92 -4 gh=2 — 92" —k-2 Thus, we use k — 2 additional conditions on level

subgroup to define the subdirect product Gj_1 X Gj_1, which contain G’y as a
proper subgroup of Gi. Because according to the conditions, which are realized
in the commutator of G'f, (9) and (8) indexes of levels are even.

Corollary 10. A commutator G'y, is embedded as a normal subgroup in Gy_1X
Gr_1.

Proof. A proof of injective embedding G’} into Gy_1 X G}_1 immedi-
ately follows from last item of proof of Corollary 9. The minimality of G'f
as a normal subgroup of G} and injective embedding G’} into Gy_1 X Gj_1
immediately entails that G’y <Gr_1 X Gp_1.

Theorem 5. A commutator of Gy, has form G'y, = G,_1XGy_1, where the sub-
direct product is defined by relations (8) and (9). The order of G’y is 22 %2

Proof. Since according to Statement 2 (g1, g2) as elements of G’y also
satisfy relations (8) and (9), which define the subdirect product Gy_1 K Gj_;.
Also condition g1gs € B'j_1 gives parity of permutation which defined by
(91, 92) because B'j_1 contains only element with even index of level [16]. The
group G’y has 2 disjoint domains of transitivity so G’y has the structure of a
subdirect product of Gj_; which acts on this domains transitively. Thus, all
elements of G, satisfy the conditions (8), (9) which define subdirect product
Gr—1XG_1. Hence G’ < Gi_1XG_1 but G’y can be equipped by some other
relations, therefore, the presence of isomorphism has not yet been proved. For
proving revers inclusion we have to show that every element from Gj_1 XG4
can be expressed as word a~'b~lab, where a,b € G},. Therefore, it suffices to
show the reverse inclusion. For this goal we use that G'), < Gp_1 X G_1. As
it was shown in [16] that the order of Gy, is 22" 2.

As it was shown above, G’y has k new conditions relatively to G. Each
condition is stated on some level-subgroup. Each of these conditions reduces
an order of the corresponding level subgroup in 2 times, so the order of G, is
in 2% times lesser. On every X!, | < k — 1, there is even number of active v.p.
by this reason, there is trivial permutation on X©.
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According to the Corollary 9, in the subdirect product Gj_1 X Gj_1 there
are exactly k — 2 conditions relatively to Gr_1 X Gi_1, which are for the
subgroups of levels. It has been shown that the relations (8), (9) are fulfilled
in G/k.

Let app, 0 < I <k—1,0<m < 2!=1 he an automorphism from Gy,
having only one active v.p. in v, and let oy, have trivial permutations in
rest of the vertices. Recall that partial case of notation of form «y,, is the
generator o := g1 of G which was defined by us in [16] and denoted by
us as ;. Note that the order of ay;, 0 < I < k —11is 2. Thus, aj =
aj_il. We choose a generating set consisting of the following 2k — 3 elements:
(01,1:2), 2.1, ooy 1.1, 23, -, Q,_1.9k-241, Where (01,1;2) is an automorphism
having exactly 2 active v.p. in v1; and vi2. Product of the form (aj1ap1a51)an
are denoted by Pj,,. In more details, P, = oj;ioumajicum, where aj; € Gi(j).
Using a conjugation by generator o, 0 < j <[ we can express any v.p. on [-
level, because (ojoyaj) = oygi—j—141. Consider the product P = (ojoyoj)oy.

1. We need to show that every element of G_1 X G_1 can be constructed
as g 'h~lgh, g, h € Gj. This proves the absence of other relations in
G’} except those that in the subdirect product Gj_1 X Gi_1. Thereby
we prove the embeddedness of G’y in Gj,_1 X G_1. We have to construct

an element of form P,_1P;_o - ...- PPy as a product of elements of form
2l

[g, h], where P, = [] P, satisfying relations (8), (9).
i=1

2. We have to construct an arbitrary tuple of 2 active v.p. on X! as
a product of several P;. We use the generator «; and conjugating
it by aj, j < l. It corresponds to the tuple of v.p. of the form
(gi1,€,...,€,g15, €, ..., €), where g;1, g; are non-trivial. Note that this tu-
ple (gi1,€,...,€, 415, €, ...,e) is an element of direct product if we consider
as an element of Sy in vertices of X*. To obtain a tuple of v.p. of form
(€5 s €, Glms €5 oy €, Gl €, .., €) We multiply Py; and Fy,.

m
3. To obtain a tuple of v.p. with 2m active v.p. we construct [] P;,, m <
i=1
2! for varying 4, j < 2F72.

On the (k — 1)-th level we choose the generator 7 which was defined in
[16] as 7 = 7, _1,17_1, ok-1. Recall that it was shown in [16] how to express

any 7ij using T, T; gk-2, T;ok—2, Where 7,7 < 2F=2 " as a product of commuta-

17'1721#20%7']- 2,C,Q). Here 7; 5x—2 was expressed as
b b

N
the commutator 7; o2 = a T} k-2 T) gk Thus, we express all tuples of

elements satisfying to relations (8) and (9) by using only commutators of Gj.

tors Tij = T’i,Qk_QTj,Qk_Q = (Oé,:



116 Skuratovskit R. V.

Thus, we get all tuples of each level subgroup elements satisfying the relations
(8) and (9). It means we express every element of each level subgroup by a
commutators. In particular to obtain a tuple of v.p. with 2m active v.p. on
X2 of 13 X 51 we will construct the product for 7;; for varying 4, j < 2k=2,

Thus, all vertex labelings of automorphisms, which appear in the represen-
tation of Gi_1 X Gk_1 by portraits as the subgroup of AutX K] are also in the
representation of G'j.

Since there are faithful representations of Gj,_1XGj_1 and G’y by portraits
of automorphisms from Aut X ¥ which coincide with each other, then subgroup
G’y of G_1 K Gg_1 ~ G’} is equal to whole G_1 KGg_1 (ie. Gp_1XGr_1 =
G'y).

The archived results are confirmed by algebraic system GAP calculations.
For instance, |SyloAs| = 26 = 22°~2 and |(SylAy)| = 2232 = 8. The
order of Go is 4, the number of additional relations in subdirect product is
k—2=3-2=1. Then we have the same result (4-4) : 2! = 8, which
confirms Theorem 5.

Example 1. Set k = 4 then |(SylAis)'| = |(G4)'| = 1024, |G3| = 64, since
k —2 =2, so according to our theorem above order of SyloA1 X SylaAig is
defined by 282 = 22 relations, and by this reason is equal to (64-64) : 4 = 1024.
Thus, orders are coincides.

Example 2. The true order of (SylaAss)' is 33554432 = 22° k = 5. A number
of additional relations which define the subdirect product is k — 2 = 3. Thus,

according to Theorem 5, | (SyloA16 X Syla A1) |= 214214 : 2572 = 228 . 25-2 —
225,

According to calculations in GAP we have: Sylo A7 ~ SylaAg ~ D4. There-
fore its derived subgroup (Syla A7) =~ (SylaAg) ~ (Dy) = Cs.

The following structural law for Syllows 2-subgroups is typical. The struc-
ture of SylsA,, SyloAy is the same. If for all n and k& that have the same
multiple of 2 as multiplier in decomposition on n! and k! Thus, SyloAgr =~
Syl2A2k+1.

Example 3. SylsA7 ~ SylsAg >~ Dy, SyloAig ~ SyloAy1 ~ SylsSy ~
(D4 x Dy)xCo. SylagAjg ~ SylaSsXSylaSy, by the same reasons that from the
proof of Corollary 9 its commutator subgroup is decomposed as (SylaAi2)’ ~
(SyZQSg), X (Syl234),,

Lemma 7. In G}, the following equalities are true:
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2l72 2l71 2l71+2l72

[Tew)= 11 #@)= TI )=

Jj=1 J=2-241 j=21=141 (11)
21

= I e, 2<i<k
j:2171+2l—2+1

In case l =k — 1, the following conditions hold:

21—2 21—1 2l—1+2l—2 2l
[Tewn= 11 e@)=e I e)= T o) =¢
j=1 j:2171+1 j:2171 j:2171+2l—2

(12)

In other terms, the subgroup G}, has an even index of any level of v X k=2

and of v1o X =21,

Proof. As a result of derivation of G}, elements of G}(1) are trivial. Due
the fact that G’ ~ Gr_1 X Gj_1, we can derivate G’} by commponents. The
commutator of GGj_1 is already investigated in Theorem 5. As Gifl =G
by Corollary 7, it is more convenient to present a characteristic equalities in
the second commutator G’y ~ G'_1 ® G'j_1 as equations in G2 | K G2 _ .
As shown above, for 2 <[l < k—1,in G%_l the following equalities are true:

2l71 2171 2171
1T e@igi0) = 11 ) 11 (o)) =
j=1 Jj=1 Jj=1
21—1 21—1 2l—1 (13)
= eto) [ elon) = [ (ot =€
j=1 j=1 j=1
2l72 2171 2171+2l72 2l
[Tew)= TI e) = 1] e@)= [ el 04
7=1 j:2l—2+1 j=2l_1+1 j:2l—1+2l—2+1

The equality (14) is true because of it is the initial group G’y ~ Gr_1 X Gj_1.
The equalities

2171+2172 ol
II e@)=1II e
j:2l—1+1 j:21—1+2l—2+1

are right for elements of second group G’y_1, since elements of the original
group are endowed with this conditions.
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Upon a squaring of G’y any element of G'x(l), satisfies the equality (14)
in addition to satisfying the previous conditions (11) because of (Gj_1(1))* =
G'1—1(1). The similar conditions appears in (G'j_1(k — 2))? after squaring of
G'k. Thus, taking into account the characteristic equations of G’'y_1(l), the
subgroup (G’j_1(k — 2))? satisfies the equality:

2]973 2k72 2k72+2k73 2k71
[Mew)= 1] ew)=e JI @)= JI el =e
j=1 j=2k=341 j=2k—241 j=2k—142k—241

(15)

Taking into account the structure G’y ~ Gj_1 X Gj_1 we obtain after
derivation G, ~ (Gr_o K Gj_2) K (G2 K Gi_2). With respect to conditions
8, 9 in the subdirect product we have that the order of G}, is 92" —k=2 . 92%k—3 _
22" =3k+1 hecause on every level 2 < < k order of level subgroup G"(l) is in
4 times lesser then order of G’k (l). On the 1-st level one new condition arises
that reduce order of G'k(1) in 2 times. Totally we have 2(k —2)+1 =2k —3
new conditions in comparing with G’j.

Example 4. Size of (GY]) is 32, a size of direct product (G4)? is 64, but, due
to relation on second level of GY., the direct product (G4)? transforms into the
subdirect product G% X GY that has 2 times less feasible combination on X2
The number of additional relations in the subdirect product is k—3 =4—3 = 1.
Thus the order of product is reduced in 2' times.

Example 5. The commutator subgroup of Syl,(Ag) consists of elements:

{e, (13)(24)(57)(68), (12)(34), (14)(23)(57)(68), (56)(78),
(13)(24)(58)(67), (12)(34)(56)(78), (14)(23)(58)(67)}.

The commutator Syly(As) ~ C3 that is an elementary abelian 2-group of order
8. This fact confirms our formula d(Gy) = 2k — 3, because k = 3 and d(Gy) =
2k — 3 = 3. A minimal generating set of Syl(Ag) consists of 3 generators:
(1,3)(2,4)(5,7)(6,8), (1,2)(3,4), (1,3)(2,4)(5,8)(6,7).

Example 6. The minimal generating set of Sylh(Aig) consists of 5 (that is
2.4 —3) generators:

(1,4,2,3)(5,6)(9,12)(10, 11), (1,4)(2, 3)(5,8)(6,7), (1,2)(5, 6),
(1,7,3,5)(2,8,4,6)(9,14,12,16)(10, 13, 11, 15),
(1,7)(2,8)(3,6)(4,5)(9,16,10,15)(11, 14,12, 13).
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Example 7. Minimal generating set of Syly(Asa) consists of 7 (that is 2-5—3)
generators:

(23,24)(31,32), (1,7)(2,8)(3,5,4, 6)(11, 12)(25, 32)(26, 31)(27, 29)(28, 30),
(3,4)(5,8)(6,7)(13,14)(23, 24)(27, 28)(29, 32)(30, 31),
(7,8)(15,16)(23, 24)(31, 32),
(1,9,7,15)(2,10,8,16)(3,11,5,13)(4, 12, 6, 14)(17, 29, 22, 27, 18, 30, 21, 28)
(19,32,23,26,20,31,24,25), (1,5,2,6)(3,7,4,8)(9,15)(10, 16)(11, 13) x
(12,14)(19,20)(21, 24, 22, 23)(29, 31)(30, 32), (3, 4) (5, 8) (6, 7)(9, 11, 10, 12) x
(13,14)(15,16)(17, 23, 20, 22, 18, 24, 19, 21)(25, 29, 27, 32, 26, 30, 28, 31).

This confirms our formula of minimal generating set size 2 - k — 3.

4. CONCLUSION

The size of minimal generating set for commutator of Sylow 2-subgroup of
alternating group A,r was proven is equal to 2k — 3.

A new approach to presentation of Sylow 2-subgroups of alternating group
Aok was applied. As a result the short proof of a fact that commutator width of
Sylow 2-subgroups of alternating group A,x, permutation group Sy,x and Sylow
p-subgroups of SylaA,x (SylaSyk) are equal to 1 was obtained. Commutator
width of permutational wreath product B C,, were investigated.
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Crypamoscoruti P. B.
MIHIMAJIBHA CUCTEMA TBIPHUX KOMYTAHTA CUJIOBCBKUX 2-TIIJITPYIT 3HAKO3MIHHOT
TPVIIN I X CTPYKTYPA

Pesrome

SuaiifieHo MiHIMaJIbHY CHCTEMY TBIDHUX JIJIsi KOMYTAHTa CUJIOBCHKUX 2-TI/IrPY T 3HAKO3MIHHOT
rpynu. Jloc/mimKeHo CTpyKTypy KOMyTaHTa CUIOBCHKUX 2-IIIPYIl 3HAKO3MIiHHOI rpynu Aok .

Tokazano, mo (SyleAqr)? = SylyAgr, k > 2.

HoBeeno, 1o J0BXKUHA 10 KOMyTaTOpa JOBLJILHOIO €JIEMEHTa iTepipOBaHOIO BiHIIEBOI'O
no6yTKy mukmidHux rpyn Cp,, pi € N nmopiBaioe 1. 3HalijleHa IMHPUHY 10 KOMMYTaHTY
MPsIMOT TPAHUIIL BIHIIEBOTO JOOYTKY IUKJIIYHAX TPYT. Y JaHiit cTaTTi 3HAIEH] BEPXHI OI[IHKA
mmpunn 1o komytanty (cw(G)) [1] Binnesoro go6yTKy rpy.

PosrisiHyTo pekypcuBHE HpeicTaBiieHHs CHiIOBCKUX 2-Ilinrpynm Syla(Asr) 3 Ask. B
pe3ysIbTaTi OTPUMAHO KOPOTKE JIOBEIEHHSI TOTO, IO IIMPUHA O KOMYTAHTY CHJIOBCHKUX 2-
nigrpyn rpyn A,k i S,k piBna 1.

Jlocti2KeHO KOMYTATOpHA IUPUHA MEPEeCTAaHOBOYHOTO ciutereHHst B ! C,. 3HaiigeHa
BEPXHS OIHKA, IMUPWHH 110 KOMMYTaHTa CIIETEHHS TPYI Mif0Unx mnepecranoBkamu — B C,
JIJIst TOBiIbHOL rpymu B.

Karouosi caosa: sinyesutl dobymox, MIHIMAALHG CUCTNEMA MEIPHUL KOMYMAHMA CUNOE-
CoRUT 2-nidepyn 3HAKOIMINHOL 2PYNU, WUPUHG MO KOMYMAHMY CUAOBCORUL P-Nid2pyn, Ko-
MYMAHM CUAOBCORUT 2-Ni02DpYn 3HAKO3MIHHOL 2pYnu.

Crypamoscruti P. B.
MUHUMAJIBHASI CUCTEMA OBPA3VIOIIUX KOMMYTAHTA CUJIOBCKUX 2-TIOJATPYIII 3HA-
KOIEPEMEHHOU I'PVIIITBI U UX CTPYKTYPA

Pesrome

Haiineno MuanmaibHas cucTeMa 06pa3yIonyX /s KOMMYTAHTA CHJIOBCKUX 2-TIOATPYTIIT 3HA-
KOIIEPEMEHHOM Tpymnbl. VcemeoBana CTpyKTypa KOMMYTATOPHON TTOATPYIIIBI CHJIOBCKAX 2-
MOJI'PYIII 3HAKONIEPEMEHHOH rpynibl Aqgk .

ITokazano, aro (SyleAqr)? = Syly Ak, k > 2.

JlokazaHo, 9TO JIJIMHA 1T0 KOMMYTATOPa MPOU3BOJBLHOTO 3JIEMEHTA UTEPUPOBAHOTO CILIE-
renus rukandeckux rpymn Cp,, p; € N pasna 1. Haiinena mupusa 10 KOMMYTAHTY IPSIMOIO
TIpeJIeia CIVIETEHUsT IMKJINIECKUX IPYIIL. B JJaHHO! CTaThe MPEJCTABICHbI BEPXHUE ONECHKU
mmpuasl KoMmmyTtaropa (cw(G)) [1] cilerenust rpym.

PaccMOTpeHO peKypCUBHOE IPeACTaBIeHne CUIOBCKUX 2-oarpynit Syla(Aqk) n3 Aqsk. B
pE3yJIbTaTe MOJIyIeHO KPATKOE JTOKA3ATEIHLCTBO TOTO, YTO NIMPUHA KOMMYTATOPA CUJIOBCKAX
2-moArpyIi rpynibl Agk, TPYIIIBI IEPECTAHOBOK Sok .

UccnenoBana KOMMYTATOPHAs IIMPUHA TI€pECTAHOBOYHOTO ciierenust B C,,. Haiinena
BEPXHsIsl OIIEHKA MIMPUHBI 10 KOMMYTAHTY CIUIETEHUS TPYII JEHCTBYIONMX TEPECTAHOBKAMUI
— B C,, 11 1pou3BoJIbHOM rpymibl B.

Kaouesoie cro6a: cnaemenue epynn, MuHUMAAbHASA CUCTEMA 00PA3YIOWULT KOMMYMAHMA
CUNOBCKUT 2-1002PYNN, 3HAKONEPEMEHHOT 2PYNNDL, WUPUHE MO KOMMYMAHMY CUNOBCKUL P-
n002pynn, KOMMYMAHM CUAOSCKUT 2-nodepynn 3HAKONEPEMEHHOT 2DYnnbL.
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