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GROUP AND ITS STRUCTURE

The size of a minimal generating set for the commutator subgroup of Sylow 2-subgroups of
alternating group is found. The structure of commutator subgroup of Sylow 2-subgroups of
the alternating group 𝐴2𝑘 is investigated.

It is shown that (𝑆𝑦𝑙2𝐴2𝑘 )
2 = 𝑆𝑦𝑙′2𝐴2𝑘 , 𝑘 > 2.

It is proved that the commutator length of an arbitrary element of the iterated wreath
product of cyclic groups 𝐶𝑝𝑖 , 𝑝𝑖 ∈ N equals to 1. The commutator width of direct limit
of wreath product of cyclic groups is found. This paper presents upper bounds of the
commutator width (𝑐𝑤(𝐺)) [1] of a wreath product of groups.

A recursive presentation of Sylows 2-subgroups 𝑆𝑦𝑙2(𝐴2𝑘 ) of 𝐴2𝑘 is introduced. As a
result the short proof that the commutator width of Sylow 2-subgroups of alternating group
𝐴2𝑘 , permutation group 𝑆2𝑘 and Sylow 𝑝-subgroups of 𝑆𝑦𝑙2𝐴𝑝𝑘 (𝑆𝑦𝑙2𝑆𝑝𝑘 ) are equal to 1 is
obtained.

A commutator width of permutational wreath product 𝐵 ≀𝐶𝑛 is investigated. An upper
bound of the commutator width of permutational wreath product 𝐵 ≀ 𝐶𝑛 for an arbitrary
group 𝐵 is found.
MSC: 20B27, 20E08, 20B22, 20B35,20F65,20B07.
Key words: wreath product of group, minimal generating set of commutator subgroup of
syllow 2-subgroups groups, commutator width of wreath product, commutator width of Sylow
𝑝-subgroups, commutator subgroup of alternating group.
DOI: 10.18524/2519-206x.2019.2(34).190058.

1. Introduction

Meldrum J. [2] briefly considered one form of commutators of the wreath
product 𝐴 ≀ 𝐵. In order to obtain a more detailed description of this form,
we take into account the commutator width (𝑐𝑤(𝐺)) as presented in work of
Muranov A. [1].

As well known the first example of a group 𝐺 with 𝑐𝑤(𝐺) > 1 was given
by Fite [4]. The smallest finite examples of such groups are groups of order
96, there’s two of them, nonisomorphic to each other, were given by Guralnick
[23].

We deduce an estimation for commutator width of wreath product of groups
𝐶𝑛 ≀ 𝐵 taking in consideration a 𝑐𝑤(𝐵) of passive group 𝐵. A form of com-
mutators of wreath product 𝐴 ≀ 𝐵 that was shortly considered in [2]. The
form of commutator presentation [2] is proposed by us as wreath recursion [9]
and commutator width of it was studied. We impose more weak condition
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on the presentation of wreath product commutator then it was imposed by J.
Meldrum.

In this paper we continue a researches which was stared in [16; 17]. We
find a minimal generating set and the structure for commutator subgroup of
𝑆𝑦𝑙2𝐴2𝑘 .

A research of commutator-group serve to decision of inclusion problem [5]
for elements of 𝑆𝑦𝑙2𝐴2𝑘 in its derived subgroup (𝑆𝑦𝑙2𝐴2𝑘)′. It was known that,
the commutator width of iterated wreath products of nonabelian finite simple
groups is bounded by an absolute constant [3; 4]. But it was not proven that

commutator subgroup of
𝑘
≀

𝑖=1
𝒞𝑝𝑖 consists of commutators. We generalize the

passive group of this wreath product to any group 𝐵 instead of only wreath
product of cyclic groups and obtain an exact commutator width.

Also we are going to prove that the commutator width of Sylows 𝑝-
subgroups of symmetric and alternating groups 𝑝 ≥ 2 is 1.

The (permutational) wreath product 𝐻 ≀𝐺 is the semidirect product 𝐻𝑋h
𝐺, where 𝐺 acts on the direct power 𝐻𝑋 by the respective permutations of the
direct factors. The group 𝐶𝑝 or (𝐶𝑝, 𝑋) is equipped with a natural action by
the left shift on 𝑋 = {1, . . . , 𝑝}, 𝑝 ∈ N. As well known that a wreath product
of permutation groups is associative construction.

The multiplication rule of automorphisms 𝑔, ℎ which presented in form of
the wreath recursion [6] 𝑔 = (𝑔(1), 𝑔(2), . . . , 𝑔(𝑑))𝜎𝑔, ℎ = (ℎ(1), ℎ(2), . . . , ℎ(𝑑))𝜎ℎ,
is given by the formula:

𝑔 · ℎ = (𝑔(1)ℎ(𝜎𝑔(1)), 𝑔(2)ℎ(𝜎𝑔(2)), . . . , 𝑔(𝑑)ℎ(𝜎𝑔(𝑑)))𝜎𝑔𝜎ℎ.

We define 𝜎 as (1, 2, . . . , 𝑝) where 𝑝 is defined by context.
The set𝑋* is naturally a vertex set of a regular rooted tree, i.e. a connected

graph without cycles and a designated vertex 𝑣0 called the root, in which two
words are connected by an edge if and only if they are of form 𝑣 and 𝑣𝑥, where
𝑣 ∈ 𝑋*, 𝑥 ∈ 𝑋. The set 𝑋𝑛 ⊂ 𝑋* is called the 𝑛-th level of the tree 𝑋* and
𝑋0 = {𝑣0}. We denote by 𝑣𝑗𝑖 the vertex of 𝑋𝑗 , which has the number 𝑖. Note
that the unique vertex 𝑣𝑘,𝑖 corresponds to the unique word 𝑣 in alphabet 𝑋.
For every automorphism 𝑔 ∈ 𝐴𝑢𝑡𝑋* and every word 𝑣 ∈ 𝑋* define the section
(state) 𝑔(𝑣) ∈ 𝐴𝑢𝑡𝑋* of 𝑔 at 𝑣 by the rule: 𝑔(𝑣)(𝑥) = 𝑦 for 𝑥, 𝑦 ∈ 𝑋* if and only
if 𝑔(𝑣𝑥) = 𝑔(𝑣)𝑦. The subtree of 𝑋* induced by the set of vertices ∪𝑘

𝑖=0𝑋
𝑖 is

denoted by 𝑋 [𝑘]. The restriction of the action of an automorphism 𝑔 ∈ 𝐴𝑢𝑡𝑋*

to the subtree 𝑋 [𝑙] is denoted by 𝑔(𝑣)|𝑋[𝑙] . A restriction 𝑔(𝑣𝑖𝑗)|𝑋[1] is called the
vertex permutation (v.p.) of 𝑔 in a vertex 𝑣𝑖𝑗 and denoted by 𝑔𝑖𝑗 . We call the
endomorphism 𝛼|𝑣 restriction of 𝑔 in a vertex 𝑣 [6]. For example, if |𝑋| = 2
then we just have to distinguish active vertices, i.e., the vertices for which 𝛼|𝑣
is non-trivial.
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Let us label every vertex of 𝑋 𝑙, 0 ≤ 𝑙 < 𝑘 by sign 0 or 1 in relation to
state of v.p. in it. Obtained by such way a vertex-labeled regular tree is an
element of 𝐴𝑢𝑡𝑋 [𝑘]. All undeclared terms are from [7; 8].

Let us make some notations. For brevity, in form of wreath recursion we
write a commutator as [𝑎, 𝑏] = 𝑎𝑏𝑎−1𝑏−1 that is inverse to 𝑎−1𝑏−1𝑎𝑏. That
does not reduce the generality of our reasoning. Since for convenience the
commutator of two group elements 𝑎 and 𝑏 is denoted by [𝑎, 𝑏] = 𝑎𝑏𝑎−1𝑏−1,
conjugation by an element 𝑏 as

𝑎𝑏 = 𝑏𝑎𝑏−1,

We define 𝐺𝑘 and 𝐵𝑘 recursively i.e.

𝐵1 = 𝐶2, 𝐵𝑘 = 𝐵𝑘−1 ≀ 𝐶2 for 𝑘 > 1,

𝐺1 = ⟨𝑒⟩, 𝐺𝑘 = {(𝑔1, 𝑔2)𝜋 ∈ 𝐵𝑘 | 𝑔1𝑔2 ∈ 𝐺𝑘−1} for 𝑘 > 1.

Note that 𝐵𝑘 =
𝑘
≀

i=1
𝐶2.

The commutator length of an element 𝑔 of the derived subgroup of a
group 𝐺, denoted clG(g), is the minimal 𝑛 such that there exist elements
𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 in G such that 𝑔 = [𝑥1, 𝑦1] . . . [𝑥𝑛, 𝑦𝑛]. The commutator
length of the identity element is 0. The commutator width of a group 𝐺, de-
noted 𝑐𝑤(𝐺), is the maximum of the commutator lengths of the elements of its
derived subgroup [𝐺,𝐺]. We denote by 𝑑(𝐺) the minimal number of generators
of the group 𝐺.

2. Main Results

Commutator width of Sylow 2-subgroups of 𝐴2𝑘 and 𝑆2𝑘 .
The following Lemma imposes the Corollary 4.9 of [2] and it will be deduced

from the corollary 4.9 with using in presentation elements in the form of wreath
recursion.

Lemma 1. An element of form (𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝) ∈ 𝑊 ′ = (𝐵 ≀ 𝐶𝑝)
′ iff product

of all 𝑟𝑖 (in any order) belongs to 𝐵′, where 𝑝 ∈ N, 𝑝 ≥ 2.

Proof. More details of our argument may be given as follows.

𝑤 = (𝑟1, 𝑟2, . . . , 𝑟𝑝−1, 𝑟𝑝),

where 𝑟𝑖 ∈ 𝐵. If we multiply elements from a tuple (𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝), where
𝑟𝑖 = ℎ𝑖𝑔𝑎(𝑖)ℎ

−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖)

, ℎ, 𝑔 ∈ 𝐵 and 𝑎, 𝑏 ∈ 𝐶𝑝, then we get a product

𝑥 =

𝑝∏︁
i=1

𝑟𝑖 =

𝑝∏︁
𝑖=1

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖)

∈ 𝐵′, (1)
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where 𝑥 is a product of corespondent commutators. Therefore, we can write
𝑟𝑝 = 𝑟−1

𝑝−1 . . . 𝑟
−1
1 𝑥. We can rewrite element 𝑥 ∈ 𝐵′ as the product 𝑥 =

𝑚∏︀
𝑗=1

[𝑓𝑗 , 𝑔𝑗 ], 𝑚 ≤ 𝑐𝑤(𝐵).

Note that we impose more weak condition on the product of all 𝑟𝑖 to belongs
to 𝐵′ then in Definition 4.5. of form 𝑃 (𝐿) in [2], where the product of all 𝑟𝑖
belongs to a subgroup 𝐿 of 𝐵 such that 𝐿 > 𝐵′.

In more detail deducing of our representation constructing can be re-
ported in following way. If we multiply elements having form of a tuple
(𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝), where 𝑟𝑖 = ℎ𝑖𝑔𝑎(𝑖)ℎ

−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖)

, ℎ, 𝑔 ∈ 𝐵 and 𝑎, 𝑏 ∈ 𝐶𝑝,
then in case 𝑐𝑤(𝐵) = 0 we obtain a product

𝑝∏︁
i=1

𝑟𝑖 =

𝑝∏︁
𝑖=1

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖)

∈ 𝐵′. (2)

Note that if we rearrange elements in (1) as

ℎ1ℎ
−1
1 𝑔1𝑔

−1
2 ℎ2ℎ

−1
2 𝑔1𝑔

−1
2 ...ℎ𝑝ℎ

−1
𝑝 𝑔𝑝𝑔

−1
𝑝 ,

then by the reason of such permutations we obtain a product of corespondent
commutators. Therefore, following equality holds true

𝑝∏︁
𝑖=1

ℎ𝑖𝑔𝑎(𝑖)ℎ
−1
𝑎𝑏(𝑖)𝑔

−1
𝑎𝑏𝑎−1(𝑖)

=

𝑝∏︁
𝑖=1

ℎ𝑖𝑔𝑖ℎ
−1
𝑖 𝑔−1

𝑖 𝑥0 =

𝑝∏︁
𝑖=1

ℎ𝑖ℎ
−1
𝑖 𝑔𝑖𝑔

−1
𝑖 𝑥 ∈ 𝐵′, (3)

where 𝑥0, 𝑥 are a products of corespondent commutators. Therefore,

(𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝) ∈ 𝑊 ′ iff 𝑟𝑝−1 · . . . · 𝑟1 · 𝑟𝑝 = 𝑥 ∈ 𝐵′. (4)

Thus, one element from states of wreath recursion (𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝) depends on

rest of 𝑟𝑖. This dependence contribute that the product
𝑝∏︀

𝑗=1
𝑟𝑗 for an arbitrary

sequence {𝑟𝑗}𝑝𝑗=1 belongs to 𝐵′. Thus, 𝑟𝑝 can be expressed as:

𝑟𝑝 = 𝑟−1
1 · . . . · 𝑟−1

𝑝−1𝑥.

Denote a 𝑗-th tuple, which consists of a wreath recursion elements,
by (𝑟𝑗1 , 𝑟𝑗2 , ..., 𝑟𝑗𝑝). Closedness by multiplication of the set of forms
(𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝) ∈ 𝑊 = (𝐵 ≀ 𝐶𝑝)

′ follows from

𝑘∏︁
𝑗=1

(𝑟𝑗1 . . . 𝑟𝑗𝑝−1𝑟𝑗𝑝) =
𝑘∏︁

𝑗=1

𝑝∏︁
𝑖=1

𝑟𝑗𝑖 = 𝑅1𝑅2...𝑅𝑘 ∈ 𝐵′, (5)
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where 𝑟𝑗𝑖 is 𝑖-th element from the tuple number 𝑗, 𝑅𝑗 =
𝑝∏︀

𝑖=1
𝑟𝑗𝑖, 1 ≤ 𝑗 ≤ 𝑘.

As it was shown above 𝑅𝑗 =
𝑝−1∏︀
𝑖=1

𝑟𝑗𝑖 ∈ 𝐵′. Therefore, the product (5) of 𝑅𝑗 ,

𝑗 ∈ {1, ..., 𝑘} which is similar to the product mentioned in [2], has the property
𝑅1𝑅2...𝑅𝑘 ∈ 𝐵′ too, because of 𝐵′ is subgroup. Thus, we get a product of
form (1) and the similar reasoning as above are applicable.

Let us prove the sufficiency condition. If the set 𝐾 of elements satisfying
the condition of this theorem, that all products of all 𝑟𝑖, where every 𝑖 occurs
in this forms once, belong to 𝐵′, then using the elements of form

(𝑟1, 𝑒, ..., 𝑒, 𝑟
−1
1 ), ..., (𝑒, 𝑒, ..., 𝑒, 𝑟𝑖, 𝑒, 𝑟

−1
𝑖 ), ...,

(𝑒, 𝑒, ..., 𝑒, 𝑟𝑝−1, 𝑟
−1
𝑝−1), (𝑒, 𝑒, ..., 𝑒, 𝑟1𝑟2 · ... · 𝑟𝑝−1)

we can express any element of form (𝑟1, . . . , 𝑟𝑝−1, 𝑟𝑝) ∈ 𝑊 = (𝐵 ≀ 𝐶𝑝)
′. We

need to prove that in such way we can express all element from 𝑊 and only
elements of 𝑊 . The fact that all elements can be generated by elements of 𝐾
follows from randomness of choice every 𝑟𝑖, 𝑖 < 𝑝 and the fact that equality
(1) holds so construction of 𝑟𝑝 is determined.

Lemma 2. For any group 𝐵 and integer 𝑝 ≥ 2 if 𝑤 ∈ (𝐵 ≀𝐶𝑝)
′ then 𝑤 can be

represented as the following wreath recursion

𝑤 = (𝑟1, 𝑟2, . . . , 𝑟𝑝−1, 𝑟
−1
1 . . . 𝑟−1

𝑝−1

𝑘∏︁
𝑗=1

[𝑓𝑗 , 𝑔𝑗 ]),

where 𝑟1, . . . , 𝑟𝑝−1, 𝑓𝑗 , 𝑔𝑗 ∈ 𝐵 and 𝑘 ≤ 𝑐𝑤(𝐵).

Proof. According to Lemma 1 we have the following wreath recursion

𝑤 = (𝑟1, 𝑟2, . . . , 𝑟𝑝−1, 𝑟𝑝),

where 𝑟𝑖 ∈ 𝐵 and 𝑟𝑝−1𝑟𝑝−2 . . . 𝑟2𝑟1𝑟𝑝 = 𝑥 ∈ 𝐵′. Therefore we can write 𝑟𝑝 =
𝑟−1
1 . . . 𝑟−1

𝑝−1𝑥. We also can rewrite element 𝑥 ∈ 𝐵′ as product of commutators

𝑥 =
𝑘∏︀

𝑗=1
[𝑓𝑗 , 𝑔𝑗 ] where 𝑘 ≤ 𝑐𝑤(𝐵).

Lemma 3. For any group 𝐵 and integer 𝑝 ≥ 2 if 𝑤 ∈ (𝐵 ≀ 𝐶𝑝)
′ is defined by

the following wreath recursion

𝑤 = (𝑟1, 𝑟2, . . . , 𝑟𝑝−1, 𝑟
−1
1 . . . 𝑟−1

𝑝−1[𝑓, 𝑔]),

where 𝑟1, . . . , 𝑟𝑝−1, 𝑓, 𝑔 ∈ 𝐵 then we can represent 𝑤 as the following commu-
tator

𝑤 = [(𝑎1,1, . . . , 𝑎1,𝑝)𝜎, (𝑎2,1, . . . , 𝑎2,𝑝)],
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where

𝑎1,𝑖 = 𝑒, for 1 ≤ 𝑖 ≤ 𝑝− 1 ,

𝑎2,1 = (𝑓−1)𝑟
−1
1 ...𝑟−1

𝑝−1 ,

𝑎2,𝑖 = 𝑟𝑖−1𝑎2,𝑖−1, for 2 ≤ 𝑖 ≤ 𝑝,

𝑎1,𝑝 = 𝑔𝑎
−1
2,𝑝 .

Proof. Let us to consider the following commutator

𝜅 = (𝑎1,1, . . . , 𝑎1,𝑝)𝜎 · (𝑎2,1, . . . , 𝑎2,𝑝) · (𝑎−1
1,𝑝, 𝑎

−1
1,1, . . . , 𝑎

−1
1,𝑝−1)𝜎

−1 · (𝑎−1
2,1, . . . , 𝑎

−1
2,𝑝)

= (𝑎3,1, . . . , 𝑎3,𝑝),

where

𝑎3,𝑖 = 𝑎1,𝑖𝑎2,1+(𝑖 mod 𝑝)𝑎
−1
1,𝑖 𝑎

−1
2,𝑖 .

At first we compute the following

𝑎3,𝑖 = 𝑎1,𝑖𝑎2,𝑖+1𝑎
−1
1,𝑖 𝑎

−1
2,𝑖 = 𝑎2,𝑖+1𝑎

−1
2,𝑖 = 𝑟𝑖𝑎2,𝑖𝑎

−1
2,𝑖 = 𝑟𝑖, for 1 ≤ 𝑖 ≤ 𝑝− 1.

Then we make some transformation of 𝑎3,𝑝:

𝑎3,𝑝 = 𝑎1,𝑝𝑎2,1𝑎
−1
1,𝑝𝑎

−1
2,𝑝

= (𝑎2,1𝑎
−1
2,1)𝑎1,𝑝𝑎2,1𝑎

−1
1,𝑝𝑎

−1
2,𝑝

= 𝑎2,1[𝑎
−1
2,1, 𝑎1,𝑝]𝑎

−1
2,𝑝

= 𝑎2,1𝑎
−1
2,𝑝𝑎2,𝑝[𝑎

−1
2,1, 𝑎1,𝑝]𝑎

−1
2,𝑝

= (𝑎2,𝑝𝑎
−1
2,1)

−1[(𝑎−1
2,1)

𝑎2,𝑝 , 𝑎
𝑎2,𝑝
1,𝑝 ]

= (𝑎2,𝑝𝑎
−1
2,1)

−1[(𝑎−1
2,1)

𝑎2,𝑝𝑎
−1
2,1 , 𝑎

𝑎2,𝑝
1,𝑝 ].

Now we can see that the form of the commutator 𝜅 is similar to the form of 𝑤.
Let us make the following notation

𝑟′ = 𝑟𝑝−1 . . . 𝑟1.

We note that from the definition of 𝑎2,𝑖 for 2 ≤ 𝑖 ≤ 𝑝 it follows that

𝑟𝑖 = 𝑎2,𝑖+1𝑎
−1
2,𝑖 , for 1 ≤ 𝑖 ≤ 𝑝− 1.

Therefore

𝑟′ = (𝑎2,𝑝𝑎
−1
2,𝑝−1)(𝑎2,𝑝−1𝑎

−1
2,𝑝−2) . . . (𝑎2,3𝑎

−1
2,2)(𝑎2,2𝑎

−1
2,1)

= 𝑎2,𝑝𝑎
−1
2,1.
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And then
(𝑎2,𝑝𝑎

−1
2,1)

−1 = (𝑟′)−1 = 𝑟−1
1 . . . 𝑟−1

𝑝−1.

And now we compute the following

(𝑎−1
2,1)

𝑎2,𝑝𝑎
−1
2,1 = (((𝑓−1)𝑟

−1
1 ...𝑟−1

𝑝−1)−1)𝑟
′

= (𝑓 (𝑟′)−1
)𝑟

′
= 𝑓,

𝑎
𝑎2,𝑝
1,𝑝 = (𝑔𝑎

−1
2,𝑝)𝑎2,𝑝 = 𝑔.

Finally we conclude that

𝑎3,𝑝 = 𝑟−1
1 . . . 𝑟−1

𝑝−1[𝑓, 𝑔].

Thus, the commutator 𝜅 is presented exactly in the similar form as 𝑤 has.
For future using we formulate previous Lemma for the case 𝑝 = 2.

Corollary 1. For any group 𝐵 if 𝑤 ∈ (𝐵 ≀ 𝐶2)
′ is defined by the following

wreath recursion

𝑤 = (𝑟1, 𝑟
−1
1 [𝑓, 𝑔]),

where 𝑟1, 𝑓, 𝑔 ∈ 𝐵 then we can represent 𝑤 as commutator

𝑤 = [(𝑒, 𝑎1,2)𝜎, (𝑎2,1, 𝑎2,2)],

where

𝑎2,1 = (𝑓−1)𝑟
−1
1 ,

𝑎2,2 = 𝑟1𝑎2,1,

𝑎1,2 = 𝑔𝑎
−1
2,2 .

Lemma 4. For any group 𝐵 and integer 𝑝 ≥ 2 inequality

𝑐𝑤(𝐵 ≀ 𝐶𝑝) ≤ max(1, 𝑐𝑤(𝐵))

holds.

Proof. We can represent any 𝑤 ∈ (𝐵 ≀𝐶𝑝)
′ by Lemma 1 with the following

wreath recursion

𝑤 = (𝑟1, 𝑟2, . . . , 𝑟𝑝−1, 𝑟
−1
1 . . . , 𝑟−1

𝑝−1

𝑘∏︁
𝑗=1

[𝑓𝑗 , 𝑔𝑗 ])

= (𝑟1, 𝑟2, . . . , 𝑟𝑝−1, 𝑟
−1
1 . . . , 𝑟−1

𝑝−1[𝑓1, 𝑔1]) ·
𝑘∏︁

𝑗=2

[(𝑒, . . . , 𝑒, 𝑓𝑗), (𝑒, . . . , 𝑒, 𝑔𝑗)],

where 𝑟1, . . . , 𝑟𝑝−1, 𝑓𝑗 , 𝑔𝑗 ∈ 𝐵 and 𝑘 ≤ 𝑐𝑤(𝐵). Now by the Lemma 3 we can
see that 𝑤 can be represented as a product of max(1, 𝑐𝑤(𝐵)) commutators.
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Corollary 2. If 𝑊 = 𝐶𝑝𝑘 ≀ . . . ≀ 𝐶𝑝1 then 𝑐𝑤(𝑊 ) = 1 for 𝑘 ≥ 2.

Proof. If 𝐵 = 𝐶𝑝𝑘 ≀ 𝐶𝑝𝑘−1
then taking into consideration that 𝑐𝑤(𝐵) >

0 (because 𝐶𝑝𝑘 ≀ 𝐶𝑝𝑘−1
is not commutative group). Since Lemma 4 implies

that 𝑐𝑤(𝐶𝑝𝑘 ≀ 𝐶𝑝𝑘−1
) = 1 then according to the inequality 𝑐𝑤(𝐶𝑝𝑘 ≀ 𝐶𝑝𝑘−1

≀
𝐶𝑝𝑘−2

) ≤ max(1, 𝑐𝑤(𝐵)) from Lemma 4 we obtain 𝑐𝑤(𝐶𝑝𝑘 ≀𝐶𝑝𝑘−1
≀𝐶𝑝𝑘−2

) = 1.
Analogously if 𝑊 = 𝐶𝑝𝑘 ≀ . . . ≀𝐶𝑝1 and supposition of induction for 𝐶𝑝𝑘 ≀ . . . ≀𝐶𝑝2

holds, then using an associativity of a permutational wreath product we obtain
from the inequality of Lemma 4 and the equality 𝑐𝑤(𝐶𝑝𝑘 ≀ . . . ≀ 𝐶𝑝2) = 1 that
𝑐𝑤(𝑊 ) = 1.

We define our partial ordered set 𝑀 as the set of all finite wreath products
of cyclic groups. We make of use directed set N.

𝐻𝑘 =
𝑘
≀

𝑖=1
𝒞𝑝𝑖 (6)

Moreover, it has already been proved in Corollary 3 that each group of

the form
𝑘
≀

𝑖=1
𝒞𝑝𝑖 has a commutator width equal to 1, i.e 𝑐𝑤(

𝑘
≀

𝑖=1
𝒞𝑝𝑖) = 1. A

partial order relation will be a subgroup relationship. Define the injective

homomorphism 𝑓𝑘,𝑘+1 from the
𝑘
≀

𝑖=1
𝒞𝑝𝑖 into

𝑘+1
≀

𝑖=1
𝒞𝑝𝑖 by mapping a generator of

active group 𝒞𝑝𝑖 of 𝐻𝑘 in a generator of active group 𝒞𝑝𝑖 of 𝐻𝑘+1. In more
details the injective homomorphism 𝑓𝑘,𝑘+1 is defined as 𝑔 ↦→ 𝑔(𝑒, ..., 𝑒), where

a generator 𝑔 ∈
𝑘
≀

𝑖=1
𝒞𝑝𝑖 , 𝑔(𝑒, ..., 𝑒) ∈

𝑘+1
≀

𝑖=1
𝒞𝑝𝑖 .

Therefore this is an injective homomorphism of 𝐻𝑘 onto subgroup
𝑘
≀

𝑖=1
𝒞𝑝𝑖

of 𝐻𝑘+1.

Corollary 3. The direct limit lim−→
𝑘
≀

𝑖=1
𝒞𝑝𝑖 of direct system

⟨
𝑓𝑘,𝑗 ,

𝑘
≀

𝑖=1
𝒞𝑝𝑖

⟩
has

commutator width 1.

Proof. We make the transition to the direct limit in the direct sys-

tem
⟨
𝑓𝑘,𝑗 ,

𝑘
≀

𝑖=1
𝒞𝑝𝑖

⟩
of injective mappings from chain 𝑒 → ... →

𝑘
≀

𝑖=1
𝒞𝑝𝑖 →

𝑘+1
≀

𝑖=1
𝒞𝑝𝑖 →

𝑘+2
≀

𝑖=1
𝒞𝑝𝑖 → ....

Since all mappings in chains are injective homomorphisms, it has a triv-
ial kernel. Therefore the transition to a direct limit boundary preserves the
property 𝑐𝑤(𝐻) = 1, because each group 𝐻𝑘 from the chain endowed by
𝑐𝑤(𝐻𝑘) = 1.
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The direct limit of the direct system is denoted by lim−→
𝑘
≀

𝑖=1
𝒞𝑝𝑖 and is defined

as disjoint union of the 𝐻𝑘’s modulo a certain equivalence relation:

lim−→
𝑘
≀

𝑖=1
𝒞𝑝𝑖 =

∐︀
𝑘

𝑘
≀

𝑖=1
𝒞𝑝𝑖

/∼.

Since every element 𝑔 of lim−→
𝑘
≀

𝑖=1
𝒞𝑝𝑖 coincides with a correspondent element

from some 𝐻𝑘 of direct system, then by the injectivity of the mappings for 𝑔

the property 𝑐𝑤(
𝑘
≀

𝑖=1
𝒞𝑝𝑖) = 1 also holds. Thus, it holds for the whole lim−→

𝑘
≀

𝑖=1
𝒞𝑝𝑖 .

Corollary 4. For prime 𝑝 and 𝑘 ≥ 2 commutator width 𝑐𝑤(𝑆𝑦𝑙𝑝(𝑆𝑝𝑘)) = 1
and for prime 𝑝 > 2 and 𝑘 ≥ 2 commutator width 𝑐𝑤(𝑆𝑦𝑙𝑝(𝐴𝑝𝑘)) = 1.

Proof. Since 𝑆𝑦𝑙𝑝(𝑆𝑝𝑘) ≃
𝑘
≀

i=1
𝐶𝑝 see [10; 11], then 𝑐𝑤(𝑆𝑦𝑙𝑝(𝑆𝑝𝑘)) = 1.

As well known in case 𝑝 > 2 we have 𝑆𝑦𝑙𝑝𝑆𝑝𝑘 ≃ 𝑆𝑦𝑙𝑝𝐴𝑝𝑘 see [16; 19], then
𝑐𝑤(𝑆𝑦𝑙𝑝(𝐴𝑝𝑘)) = 1.

Proposition 1. The following inclusion 𝐵′
𝑘 < 𝐺𝑘 holds.

Proof. Induction on 𝑘. For 𝑘 = 1 we have 𝐵′
𝑘 = 𝐺𝑘 = {𝑒}. Let us fix

some 𝑔 = (𝑔1, 𝑔2) ∈ 𝐵′
𝑘. Then 𝑔1𝑔2 ∈ 𝐵′

𝑘−1 by Lemma 1. As 𝐵′
𝑘−1 < 𝐺𝑘−1 by

induction hypothesis therefore 𝑔1𝑔2 ∈ 𝐺𝑘−1 and by definition of 𝐺𝑘 it follows
that 𝑔 ∈ 𝐺𝑘.

Corollary 5. The set 𝐺𝑘 is a subgroup in the group 𝐵𝑘.

Proof. According to recursively definition of 𝐺𝑘 and 𝐵𝑘, where 𝐺𝑘 =
{(𝑔1, 𝑔2)𝜋 ∈ 𝐵𝑘 | 𝑔1𝑔2 ∈ 𝐺𝑘−1} 𝑘 > 1, 𝐺𝑘 is subset of 𝐵𝑘 with condition 𝑔1𝑔2 ∈
𝐺𝑘−1. It is easy to check the closedness by multiplication elements of 𝐺𝑘 with
condition 𝑔1𝑔2, ℎ1ℎ2 ∈ 𝐺𝑘−1 because 𝐺𝑘−1 is subgroup so 𝑔1𝑔2ℎ1ℎ2 ∈ 𝐺𝑘−1

too. A condition of existing inverse be verified trivial.

Lemma 5. For any 𝑘 ≥ 1 we have |𝐺𝑘| = |𝐵𝑘|/2.

Proof. Induction on 𝑘. For 𝑘 = 1 we have |𝐺1| = 1 = |𝐵1/2|. Every
element 𝑔 ∈ 𝐺𝑘 can be uniquely write as the following wreath recursion

𝑔 = (𝑔1, 𝑔2)𝜋 = (𝑔1, 𝑔
−1
1 𝑥)𝜋

where 𝑔1 ∈ 𝐵𝑘−1, 𝑥 ∈ 𝐺𝑘−1 and 𝜋 ∈ 𝐶2. Elements 𝑔1, 𝑥 and 𝜋 are independent
therefore |𝐺𝑘| = 2|𝐵𝑘−1| · |𝐺𝑘−1| = 2|𝐵𝑘−1| · |𝐵𝑘−1|/2 = |𝐵𝑘|/2.

Corollary 6. The group 𝐺𝑘 is a normal subgroup in the group 𝐵𝑘 i.e. 𝐺𝑘�𝐵𝑘.



106 Skuratovskii R. V.

Proof. There exists normal embedding (normal injective monomorphism)
𝜙 : 𝐺𝑘 → 𝐵𝑘 [20] such that 𝐺𝑘 ▷ 𝐵𝑘. Indeed, according to Lemma index
|𝐵𝑘 : 𝐺𝑘| = 2 so it is normal subgroup that is quotient subgroup 𝐵𝑘/𝐶2 ≃ 𝐺𝑘.

Theorem 1. For any 𝑘 ≥ 1 we have 𝐺𝑘 ≃ 𝑆𝑦𝑙2𝐴2𝑘 .

Proof. Group 𝐶2 acts on the set𝑋 = {1, 2}. Therefore we can recursively
define sets 𝑋𝑘 on which group 𝐵𝑘 acts 𝑋1 = 𝑋, 𝑋𝑘 = 𝑋𝑘−1 ×𝑋 for k>1. At
first we define 𝑆2𝑘 = 𝑆𝑦𝑚(𝑋𝑘) and 𝐴2𝑘 = 𝐴𝑙𝑡(𝑋𝑘) for all integer 𝑘 ≥ 1. Then
𝐺𝑘 < 𝐵𝑘 < 𝑆2𝑘 and 𝐴2𝑘 < 𝑆2𝑘 .

We already know [16] that 𝐵𝑘 ≃ 𝑆𝑦𝑙2(𝑆2𝑘). Since |𝐴2𝑘 | = |𝑆2𝑘 |/2 therefore
|𝑆𝑦𝑙2𝐴2𝑘 | = |𝑆𝑦𝑙2𝑆2𝑘 |/2 = |𝐵𝑘|/2. By Lemma 2 it follows that |𝑆𝑦𝑙2𝐴2𝑘 | =
|𝐺𝑘|. Therefore it is left to show that 𝐺𝑘 < 𝐴𝑙𝑡(𝑋𝑘).

Let us fix some 𝑔 = (𝑔1, 𝑔2)𝜎
𝑖 where 𝑔1, 𝑔2 ∈ 𝐵𝑘−1, 𝑖 ∈ {0, 1} and 𝑔1𝑔2 ∈

𝐺𝑘−1. Then we can represent 𝑔 as follows

𝑔 = (𝑔1𝑔2, 𝑒) · (𝑔−1
2 , 𝑔2) · (𝑒, 𝑒, )𝜎𝑖.

In order to prove this theorem it is enough to show that

(𝑔1𝑔2, 𝑒), (𝑔
−1
2 , 𝑔2), (𝑒, 𝑒, )𝜎 ∈ 𝐴𝑙𝑡(𝑋𝑘).

Element (𝑒, 𝑒, )𝜎 just switch letters 𝑥1 and 𝑥2 for all 𝑥 ∈ 𝑋𝑘. Therefore
(𝑒, 𝑒, )𝜎 is product of |𝑋𝑘−1| = 2𝑘−1 transpositions and therefore (𝑒, 𝑒, )𝜎 ∈
𝐴𝑙𝑡(𝑋𝑘).

Elements 𝑔−1
2 and 𝑔2 have the same cycle type. Therefore elements (𝑔−1

2 , 𝑒)
and (𝑒, 𝑔2) also have the same cycle type. Let us fix the following cycle decom-
positions

(𝑔−1
2 , 𝑒) = 𝜎1 · . . . · 𝜎𝑛,
(𝑒, 𝑔2) = 𝜋1 · . . . · 𝜋𝑛.

Note that element (𝑔−1
2 , 𝑒) acts only on letters like 𝑥1 and element (𝑒, 𝑔2) acts

only on letters like 𝑥2. Therefore we have the following cycle decomposition

(𝑔−1
2 , 𝑔2) = 𝜎1 · . . . · 𝜎𝑛 · 𝜋1 · . . . · 𝜋𝑛.

So, element (𝑔−1
2 , 𝑔2) has even number of odd permutations and then

(𝑔−1
2 , 𝑔2) ∈ 𝐴𝑙𝑡(𝑋𝑘).
Note that 𝑔1𝑔2 ∈ 𝐺𝑘−1 and 𝐺𝑘−1 = 𝐴𝑙𝑡(𝑋𝑘−1) by induction hypothesis.

Therefore 𝑔1𝑔2 ∈ 𝐴𝑙𝑡(𝑋𝑘−1). As elements 𝑔1𝑔2 and (𝑔1𝑔2, 𝑒) have the same
cycle type then (𝑔1𝑔2, 𝑒) ∈ 𝐴𝑙𝑡(𝑋𝑘).
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As it was proven by the author in [16] Sylow 2-subgroup has structure
𝐵𝑘−1 n𝑊𝑘−1, where definition of 𝐵𝑘−1 is the same that was given in [16].

Recall that it was denoted by 𝑊𝑘−1 the subgroup of 𝐴𝑢𝑡𝑋 [𝑘] such that has
active states only on 𝑋𝑘−1 and number of such states is even, i.e. 𝑊𝑘−1 C
𝑆𝑡𝐺𝑘

(𝑘− 1) [6]. It was proven that the size of 𝑊𝑘−1 is equal to 22
𝑘−1−1, 𝑘 > 1

and its structure is (𝐶2)
2𝑘−1−1. The following structural theorem characterizing

the group 𝐺𝑘 was proved by us [16].

Theorem 2. A maximal 2-subgroup of 𝐴𝑢𝑡𝑋 [𝑘] that acts by even permutations
on 𝑋𝑘 has the structure of the semidirect product 𝐺𝑘 ≃ 𝐵𝑘−1 n 𝑊𝑘−1 and
isomorphic to 𝑆𝑦𝑙2𝐴2𝑘 .

Note that 𝑊𝑘−1 is subgroup of stabilizer of 𝑋𝑘−1 i.e. 𝑊𝑘−1 < 𝑆𝑡𝐴𝑢𝑡𝑋[𝑘](𝑘−
1) �𝐴𝑢𝑡𝑋 [𝑘] and is normal too 𝑊𝑘−1 �𝐴𝑢𝑡𝑋 [𝑘], because conjugation keeps a
cyclic structure of permutation so even permutation maps in even. Therefore
such conjugation induce an automorphism of 𝑊𝑘−1 and 𝐺𝑘 ≃ 𝐵𝑘−1 n𝑊𝑘−1.

Remark 1. As a consequence, the structure founded by us in [16] fully con-
sistent with the recursive group representation (which used in this paper) based
on the concept of wreath recursion [9].

Theorem 3. Elements of 𝐵′
𝑘 have the following form 𝐵′

𝑘 = {[𝑓, 𝑙] | 𝑓 ∈ 𝐵𝑘, 𝑙 ∈
𝐺𝑘} = {[𝑙, 𝑓 ] | 𝑓 ∈ 𝐵𝑘, 𝑙 ∈ 𝐺𝑘}.

Proof. It is enough to show either 𝐵′
𝑘 = {[𝑓, 𝑙] | 𝑓 ∈ 𝐵𝑘, 𝑙 ∈ 𝐺𝑘} or

𝐵′
𝑘 = {[𝑙, 𝑓 ] | 𝑓 ∈ 𝐵𝑘, 𝑙 ∈ 𝐺𝑘} because if 𝑓 = [𝑔, ℎ] then 𝑓−1 = [ℎ, 𝑔].
We prove the proposition by induction on 𝑘. For the case 𝑘 = 1 we have

𝐵′
1 = ⟨𝑒⟩.
Consider case 𝑘 > 1. According to Lemma 2 and Corollary 1 every element

𝑤 ∈ 𝐵′
𝑘 can be represented as

𝑤 = (𝑟1, 𝑟
−1
1 [𝑓, 𝑔])

for some 𝑟1, 𝑓 ∈ 𝐵𝑘−1 and 𝑔 ∈ 𝐺𝑘−1 (by induction hypothesis). By the Corol-
lary 1 we can represent 𝑤 as commutator of

(𝑒, 𝑎1,2)𝜎 ∈ 𝐵𝑘 and (𝑎2,1, 𝑎2,2) ∈ 𝐵𝑘,

where

𝑎2,1 = (𝑓−1)𝑟
−1
1 ,

𝑎2,2 = 𝑟1𝑎2,1,

𝑎1,2 = 𝑔𝑎
−1
2,2 .

If 𝑔 ∈ 𝐺𝑘−1 then by the definition of 𝐺𝑘 and Corollary 6 we obtain (𝑒, 𝑎1,2)𝜎 ∈
𝐺𝑘.
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Remark 2. Let us to note that Theorem 3 improve Corollary 4 for the case
𝑆𝑦𝑙2𝑆2𝑘 .

Proposition 2. If 𝑔 is an element of the group 𝐵𝑘 then 𝑔2 ∈ 𝐵′
𝑘.

Proof. Induction on 𝑘. We note that 𝐵𝑘 = 𝐵𝑘−1 ≀ 𝐶2. Therefore we fix
some element

𝑔 = (𝑔1, 𝑔2)𝜎
𝑖 ∈ 𝐵𝑘−1 ≀ 𝐶2,

where 𝑔1, 𝑔2 ∈ 𝐵𝑘−1 and 𝑖 ∈ {0, 1}. Let us to consider 𝑔2 then two cases are
possible:

𝑔2 = (𝑔21, 𝑔
2
2) or 𝑔2 = (𝑔1𝑔2, 𝑔2𝑔1)

In second case we consider a product of coordinates 𝑔1𝑔2 · 𝑔2𝑔1 = 𝑔21𝑔
2
2𝑥. Since

according to the induction hypothesis 𝑔2𝑖 ∈ 𝐵′
𝑘, 𝑖 ≤ 2 then 𝑔1𝑔2 · 𝑔2𝑔1 ∈ 𝐵′

𝑘

also according to Lemma 1 𝑥 ∈ 𝐵′
𝑘. Therefore a following inclusion holds

(𝑔1𝑔2, 𝑔2𝑔1) = 𝑔2 ∈ 𝐵′
𝑘. In first case the proof is even simpler because 𝑔21, 𝑔

2
2 ∈

𝐵′ by the induction hypothesis.

Lemma 6. If an element 𝑔 = (𝑔1, 𝑔2) ∈ 𝐺′
𝑘 then 𝑔1, 𝑔2 ∈ 𝐺𝑘−1 and 𝑔1𝑔2 ∈

𝐵′
𝑘−1.

Proof. As 𝐵′
𝑘 < 𝐺𝑘 therefore it is enough to show that 𝑔1 ∈ 𝐺𝑘−1 and

𝑔1𝑔2 ∈ 𝐵′
𝑘−1. Let us fix some 𝑔 = (𝑔1, 𝑔2) ∈ 𝐺′

𝑘 < 𝐵′
𝑘. Then Lemma 1 implies

that 𝑔1𝑔2 ∈ 𝐵′
𝑘−1.

In order to show that 𝑔1 ∈ 𝐺𝑘−1 we firstly consider just one commutator
of arbitrary elements from 𝐺𝑘

𝑓 = (𝑓1, 𝑓2)𝜎, ℎ = (ℎ1, ℎ2)𝜋 ∈ 𝐺𝑘,

where 𝑓1, 𝑓2, ℎ1, ℎ2 ∈ 𝐵𝑘−1, 𝜎, 𝜋 ∈ 𝐶2. The definition of 𝐺𝑘 implies that
𝑓1𝑓2, ℎ1ℎ2 ∈ 𝐺𝑘−1.

If 𝑔 = (𝑔1, 𝑔2) = [𝑓, ℎ] then

𝑔1 = 𝑓1ℎ𝑖𝑓
−1
𝑗 ℎ−1

𝑘

for some 𝑖, 𝑗, 𝑘 ∈ {1, 2}. Then

𝑔1 = 𝑓1ℎ𝑖𝑓𝑗(𝑓
−1
𝑗 )2ℎ𝑘(ℎ−1

𝑘 )2 = (𝑓1𝑓𝑗)(ℎ𝑖ℎ𝑘)𝑥(𝑓−1
𝑗 ℎ−1

𝑘 )2,

where 𝑥 is product of commutators of 𝑓𝑖, ℎ𝑗 and 𝑓𝑖, ℎ𝑘, hence 𝑥 ∈ 𝐵′
𝑘−1.

It is enough to consider first product 𝑓1𝑓𝑗 . If 𝑗 = 1 then 𝑓2
1 ∈ 𝐵′

𝑘−1 by
Proposition 2 if 𝑗 = 2 then 𝑓1𝑓2 ∈ 𝐺𝑘−1 according to definition of 𝐺𝑘, the same
is true for ℎ𝑖ℎ𝑘. Thus, for any 𝑖, 𝑗, 𝑘 it holds 𝑓1𝑓𝑗 , ℎ𝑖ℎ𝑘 ∈ 𝐺𝑘−1. Besides that
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a square (𝑓−1
𝑗 ℎ−1

𝑘 )2 ∈ 𝐵′
𝑘 according to Proposition 2. Therefore 𝑔1 ∈ 𝐺𝑘−1

because of Proposition 2 and Proposition 1, the same is true for 𝑔2.
Now it lefts to consider the product of some 𝑓 = (𝑓1, 𝑓2), ℎ = (ℎ1, ℎ2),

where 𝑓1, ℎ1 ∈ 𝐺𝑘−1, 𝑓1ℎ1 ∈ 𝐺𝑘−1 and 𝑓1𝑓2, ℎ1ℎ2 ∈ 𝐵′
𝑘−1

𝑓ℎ = (𝑓1ℎ1, 𝑓2ℎ2).

Since 𝑓1𝑓2, ℎ1ℎ2 ∈ 𝐵′
𝑘−1 by imposed condition in this item and taking into

account that 𝑓1ℎ1𝑓2ℎ2 = 𝑓1𝑓2ℎ1ℎ2𝑥 for some 𝑥 ∈ 𝐵′
𝑘−1 then 𝑓1ℎ1𝑓2ℎ2 ∈ 𝐵′

𝑘−1

by Lemma 1. Other words closedness by multiplication holds and so according
Lemma1 we have element of commutator 𝐺′

𝑘.
In the following theorem we prove 2 facts at once.

Theorem 4. The following statements are true.

1. An element 𝑔 = (𝑔1, 𝑔2) ∈ 𝐺′
𝑘 iff 𝑔1, 𝑔2 ∈ 𝐺𝑘−1 and 𝑔1𝑔2 ∈ 𝐵′

𝑘−1.

2. Commutator subgroup 𝐺′
𝑘 coincides with set of all commutators for 𝑘 ≥ 1

𝐺′
𝑘 = {[𝑓1, 𝑓2] | 𝑓1 ∈ 𝐺𝑘, 𝑓2 ∈ 𝐺𝑘}.

Proof. For the case 𝑘 = 1 we have 𝐺′
1 = ⟨𝑒⟩. So, further we consider the

case 𝑘 ≥ 2.
Sufficiency of the first statement of this theorem follows from the Lemma 6.

So, in order to prove necessity of the both statements it is enough to show that
element

𝑤 = (𝑟1, 𝑟
−1
1 𝑥),

where 𝑟1 ∈ 𝐺𝑘−1 and 𝑥 ∈ 𝐵′
𝑘−1, can be represented as a commutator of

elements from 𝐺𝑘. By Proposition 3 we have 𝑥 = [𝑓, 𝑔] for some 𝑓 ∈ 𝐵𝑘−1 and
𝑔 ∈ 𝐺𝑘−1. Therefore

𝑤 = (𝑟1, 𝑟
−1
1 [𝑓, 𝑔]).

By the Corollary 1 we can represent 𝑤 as a commutator of

(𝑒, 𝑎1,2)𝜎 ∈ 𝐵𝑘 and (𝑎2,1, 𝑎2,2) ∈ 𝐵𝑘,

where 𝑎2,1 = (𝑓−1)𝑟
−1
1 , 𝑎2,2 = 𝑟1𝑎2,1, 𝑎1,2 = 𝑔𝑎

−1
2,2 . It only lefts to show that

(𝑒, 𝑎1,2)𝜎, (𝑎2,1, 𝑎2,2) ∈ 𝐺𝑘. Note the following

𝑎1,2 = 𝑔𝑎
−1
2,2 ∈ 𝐺𝑘−1 by Corollary 6.

𝑎2,1𝑎2,2 = 𝑎2,1𝑟1𝑎2,1 = 𝑟1[𝑟1, 𝑎2,1]𝑎
2
2,1 ∈ 𝐺𝑘−1 by Proposition 1 and

Proposition 2.
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So we have (𝑒, 𝑎1,2)𝜎 ∈ 𝐺𝑘 and (𝑎2,1, 𝑎2,2) ∈ 𝐺𝑘 by the definition of 𝐺𝑘.

Proposition 3. For arbitrary 𝑔 ∈ 𝐺𝑘 the inclusion 𝑔2 ∈ 𝐺′
𝑘 holds.

Proof. Induction on 𝑘: elements of 𝐺2
1 have form (𝜎)2 = 𝑒, where

𝜎 = (1, 2), so the statement holds. In general case, when 𝑘 > 1, the elements
of 𝐺𝑘 have the form 𝑔 = (𝑔1, 𝑔2)𝜎

𝑖, 𝑔1, 𝑔2 ∈ 𝐵𝑘−1, 𝑖 ∈ {0, 1}. Then we have
two possibilities: 𝑔2 = (𝑔21, 𝑔

2
2) or 𝑔2 = (𝑔1𝑔2, 𝑔2𝑔1).

Firstly we show that 𝑔21 ∈ 𝐺𝑘−1, 𝑔
2
2 ∈ 𝐺𝑘−1. According to Proposition 2,

we have 𝑔21, 𝑔
2
2 ∈ 𝐵′

𝑘−1 and according to Proposition 1, we have 𝐵′
𝑘−1 < 𝐺𝑘−1

then using Theorem 4 𝑔2 = (𝑔21, 𝑔
2
2) ∈ 𝐺𝑘.

Consider the second case 𝑔2 = (𝑔1𝑔2, 𝑔2𝑔1). Since 𝑔 ∈ 𝐺𝑘, then, according
to the definition of 𝐺𝑘 we have that 𝑔1𝑔2 ∈ 𝐺𝑘−1. By Proposition 1, and
definition of 𝐺𝑘, we obtain

𝑔2𝑔1 = 𝑔1𝑔2𝑔
−1
2 𝑔−1

1 𝑔2𝑔1 = 𝑔1𝑔2[𝑔
−1
2 , 𝑔−1

1 ] ∈ 𝐺𝑘−1,

𝑔1𝑔2 · 𝑔2𝑔1 = 𝑔1𝑔
2
2𝑔1 = 𝑔21𝑔

2
2[𝑔−2

2 , 𝑔−1
1 ] ∈ 𝐵′

𝑘−1.

Note that 𝑔21, 𝑔
2
2 ∈ 𝐵′

𝑘−1 according to Proposition 2, then 𝑔21𝑔
2
2[𝑔−2

2 , 𝑔−1
1 ] ∈

𝐵′
𝑘−1. Since 𝑔1𝑔2 · 𝑔2𝑔1 ∈ 𝐵′

𝑘−1 and 𝑔1𝑔2, 𝑔2𝑔1 ∈ 𝐺𝑘−1, then, according to
Lemma 6, we obtain 𝑔2 = (𝑔1𝑔2, 𝑔2𝑔1) ∈ 𝐺′

𝑘.

Statement 1. The commutator subgroup is a subgroup of 𝐺2
𝑘 i.e. 𝐺′

𝑘 < 𝐺2
𝑘.

Proof. Indeed, an arbitrary commutator presented as product of squares.
Let 𝑎, 𝑏 ∈ 𝐺 and set that 𝑥 = 𝑎, 𝑦 = 𝑎−1𝑏𝑎, 𝑧 = 𝑎−1𝑏−1. Then 𝑥2𝑦2𝑧2 =
𝑎2(𝑎−1𝑏𝑎)

2
(𝑎−1𝑏−1)

2
= 𝑎𝑏𝑎−1𝑏−1, in more detail: 𝑎2(𝑎−1𝑏𝑎)

2
(𝑎−1𝑏−1)

2
=

𝑎2𝑎−1𝑏𝑎 𝑎−1𝑏𝑎 𝑎−1𝑏−1𝑎−1𝑏−1 =
= 𝑎𝑏𝑏𝑏−1𝑎−1𝑏−1 = [𝑎, 𝑏]. In such way we obtain all commutators and their
products. Thus, we generate by squares the whole 𝐺′

𝑘.

Corollary 7. For the Syllow subgroup (𝑆𝑦𝑙2𝐴2𝑘) the following equalities
𝑆𝑦𝑙′2𝐴2𝑘 = (𝑆𝑦𝑙2𝐴2𝑘)2, Φ(𝑆𝑦𝑙2𝐴2𝑘) = 𝑆𝑦𝑙′2𝐴2𝑘 , that are characteristic proper-
ties of special p-groups [22], are true.

Proof. As well known, for an arbitrary group (also by Statement 1)
the following embedding 𝐺′ ▷ 𝐺2 holds. In view of the above Proposition
3, a reverse embedding for 𝐺𝑘 is true. Thus, the group 𝑆𝑦𝑙2𝐴2𝑘 has some
properties of special 𝑝-groups that is 𝑃 ′ = Φ(𝑃 ) [22] because 𝐺2

𝑘 = 𝐺′
𝑘 and so

Φ(𝑆𝑦𝑙2𝐴2𝑘) = 𝑆𝑦𝑙′2(𝐴2𝑘).

Corollary 8. Commutator width of the group 𝑆𝑦𝑙2𝐴2𝑘 equals to 1 for 𝑘 ≥ 2.

It immediately follows from item 2 of Theorem 4.
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3. Minimal generating set

For the construction of minimal generating set we used the representation
of elements of group 𝐺𝑘 by portraits of automorphisms at restricted binary
tree 𝐴𝑢𝑡𝑋𝑘. For convenience we will identify elements of 𝐺𝑘 with its faithful
representation by portraits of automorphisms from 𝐴𝑢𝑡𝑋 [𝑘].

We denote by 𝐴|𝑙 a set of all functions 𝑎𝑙, such, that [𝜀, . . . , 𝜀, 𝑎𝑙, 𝜀, . . .] ∈
[𝐴]𝑙. Recall that, according to [21], 𝑙-coordinate subgroup 𝑈 < 𝐺 is the fol-
lowing subgroup.

Definition 1. For an arbitrarry 𝑘 ∈ N we call a 𝑘−coordinate subgroup 𝑈 < 𝐺
a subgroup, which is determined by 𝑘-coordinate sets [𝑈 ]𝑙, 𝑙 ∈ N, if this subgroup
consists of all Kaloujnine’s tableaux 𝑎 ∈ 𝐼 for which [𝑎]𝑙 ∈ [𝑈 ]𝑙.

We denote by 𝐺𝑘(𝑙) a level subgroup of 𝐺𝑘, which consists of the tuples of
v.p. from 𝑋 𝑙, 𝑙 < 𝑘− 1 of any 𝛼 ∈ 𝐺𝑘. We denote as 𝐺𝑘(𝑘− 1) such subgroup
of 𝐺𝑘 that is generated by v.p., which are located on 𝑋𝑘−1 and isomorphic to
𝑊𝑘−1. Note that 𝐺𝑘(𝑙) is in bijective correspondence (and isomorphism) with
𝑙-coordinate subgroup [𝑈 ]𝑙 [21].

For any v.p. 𝑔𝑙𝑖 in 𝑣𝑙𝑖 of 𝑋 𝑙 we set in correspondence with 𝑔𝑙𝑖 the permu-
tation 𝜙 (𝑔𝑙𝑖) ∈ 𝑆2 by the following rule:

𝜙(𝑔𝑙𝑖) =

{︂
(1, 2), if 𝑔𝑙𝑖 ̸= 𝑒,

𝑒, if 𝑔𝑙𝑖 = 𝑒.
(7)

Define a homomorphic map from 𝐺𝑘(𝑙) onto 𝑆2 with the kernel consisting
of all products of even number of transpositions that belongs to 𝐺𝑘(𝑙). For
instance, the element (12)(34) of 𝐺𝑘(2) belongs to 𝑘𝑒𝑟𝜙. Hence, 𝜙 (𝑔𝑙𝑖) ∈ 𝑆2.

Definition 2. We define the subgroup of 𝑙-th level as a subgroup generated by
all possible vertex permutation of this level.

Statement 2. In 𝐺𝑘
′, the following 𝑘 equalities are true:

2𝑙∏︁
𝑙=1

𝜙(𝑔𝑙𝑗) = 𝑒, 0 ≤ 𝑙 < 𝑘 − 1. (8)

For the case 𝑖 = 𝑘 − 1, the following condition holds:

2𝑘−2∏︁
𝑗=1

𝜙(𝑔𝑘−1𝑗) =
2𝑘−1∏︁

𝑗=2𝑘−2+1

𝜙(𝑔𝑘−1𝑗) = 𝑒. (9)

Thus, 𝐺′
𝑘 has 𝑘 new conditions on a combination of level subgroup ele-

ments, except for the condition of last level parity from the original group.
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Proof. Note that the condition (8) is compatible with that were founded
by R. Guralnik in [23], because as it was proved by author [16] 𝐺𝑘−1 ≃ 𝐵𝑘−2o

𝒲𝑘−1, where 𝐵𝑘−2 ≃
𝑘−2
≀

𝑖=1
𝐶

(𝑖)
2 .

According to Property 1, 𝐺′
𝑘 ≤ 𝐺2

𝑘, so it is enough to prove the statement
for the elements of 𝐺2

𝑘. Such elements, as it was described above, can be
presented in the form 𝑠 = (𝑠𝑙1, ..., 𝑠𝑙2𝑙)𝜎, where 𝜎 ∈ 𝐺𝑙−1 and 𝑠𝑙𝑖 are states
of 𝑠 ∈ 𝐺𝑘 in 𝑣𝑙𝑖, 𝑖 ≤ 2𝑙. For convenience we will make the transition from
the tuple (𝑠𝑙1, ..., 𝑠𝑙2𝑙) to the tuple (𝑔𝑙1, ..., 𝑔𝑙2𝑙). Note that there is the trivial
vertex permutation 𝑔2𝑙𝑗 = 𝑒 in the product of the states 𝑠𝑙𝑗 · 𝑠𝑙𝑗 .

Since in 𝐺′
𝑘 v.p. on 𝑋0 are trivial, so 𝜎 can be decomposed as 𝜎 =

(𝜎11, 𝜎21), where 𝜎21, 𝜎22 are root permutations in 𝑣11 and 𝑣12.
Consider the square of 𝑠. So we calculate squares ((𝑠𝑙1, 𝑠𝑙2, ..., 𝑠𝑙2𝑙−1)𝜎)2.

The condition (8) is equivalent to the condition that 𝑠2 has even in-
dex on each level. Two cases are feasible: if permutation 𝜎 = 𝑒, then
((𝑠𝑙1, 𝑠𝑙2, ..., 𝑠𝑙2𝑙−1)𝜎)2 =

(︀
𝑠2𝑙1, 𝑠

2
𝑙2, ..., 𝑠

2
𝑙2𝑙−1

)︀
𝑒, so after the transition from(︀

𝑠2𝑙1, 𝑠
2
𝑙2, ..., 𝑠

2
𝑙2𝑙−1

)︀
to

(︀
𝑔2𝑙1, 𝑔

2
𝑙2, ..., 𝑔

2
𝑙2𝑙−1

)︀
, we get a tuple of trivial permutations

(𝑒, ... , 𝑒) on 𝑋 𝑙, because 𝑔2𝑙𝑗 = 𝑒. In general case, if 𝜎 ̸= 𝑒, after such

transition we obtain
(︁
𝑔𝑙1𝑔𝑙𝜎(2), ... , 𝑔𝑙2𝑙−1𝑔𝑙𝜎(2𝑙−1)

)︁
𝜎2. Consider the product

of form

2𝑙∏︁
𝑗=1

𝜙(𝑔𝑙𝑗𝑔𝑙𝜎(𝑗)), (10)

where 𝜎 and 𝑔𝑙𝑖𝑔𝑙𝜎(𝑖) are from
(︁
𝑔𝑙1𝑔𝑙𝜎(2), ... , 𝑔𝑙2𝑙−1𝑔𝑙𝜎(2𝑙−1)

)︁
𝜎2.

Note that each element 𝑔𝑙𝑗 occurs twice in (10) regardless of the per-
mutation 𝜎, therefore considering commutativity of homomorphic images

𝜙(𝑔𝑙𝑗), 1 ≤ 𝑗 ≤ 2𝑙 we conclude that
2𝑙∏︀
𝑗=1

𝜙(𝑔𝑙𝑗𝑔𝑙𝜎(𝑗)) =
2𝑙∏︀
𝑗=1

𝜙(𝑔2𝑙𝑗) = 𝑒, be-

cause of 𝑔2𝑙𝑗 = 𝑒. We rewrite
2𝑙∏︀
𝑗=1

𝜙(𝑔2𝑙𝑗) = 𝑒 as characteristic condition:

2𝑙−1∏︀
𝑗=1

𝜙(𝑔𝑙𝑗) =
2𝑙∏︀

𝑗=2𝑙−1+1

𝜙(𝑔𝑙𝑗) = 𝑒.

According to Property 1, any commutator from 𝐺′
𝑘 can be presented as a

product of some squares 𝑠2, 𝑠 ∈ 𝐺𝑘, 𝑠 = ((𝑠𝑙1, ..., 𝑠𝑙2𝑙)𝜎 ).

A product of elements of 𝐺𝑘(𝑘 − 1) satisfies the equation
2𝑙∏︀
𝑗=1

𝜙(𝑔𝑙𝑗) = 𝑒,

because any permutation of elements from 𝑋𝑘, which belongs to 𝐺𝑘 is even.
Consider the element 𝑠 = (𝑠𝑘−1,1, ..., 𝑠𝑘−1,2𝑘−1)𝜎, where (𝑠𝑘−1,1, ..., 𝑠𝑘−1,2𝑘−1) ∈
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𝐺𝑘(𝑘 − 1), 𝜎 ∈ 𝐺𝑘−1. If 𝑔01 = (1, 2), where 𝑔01 is root permutation of 𝜎, then
𝑠2 = (𝑠𝑘−1,1𝑠𝑘−1𝜎(1), ..., 𝑠𝑘−1,(2𝑘−1)𝑠𝑘−1,𝜎(2𝑘−1)), where 𝜎(𝑗) > 2𝑘−1 for 𝑗 ≤

2𝑘−1, and if 𝑗 < 2𝑘−1 then 𝜎(𝑗) ≥ 2𝑘−1. Because of
2𝑘−1∏︀
𝑗=1

𝜙(𝑔𝑘−1,𝑗) = 𝑒 in𝐺𝑘 and

the property 𝜎(𝑗) ≤ 2𝑘−1 for 𝑗 > 2𝑘−1, then the product
2𝑘−2∏︀
𝑗=1

𝜙(𝑔𝑘−1,𝑗𝑔𝑘−1,𝜎(𝑗))

of images of v.p. from (𝑔𝑘−1,1𝑔𝑘−1,𝜎(1), ..., 𝑔𝑘−1,(2𝑘−1)𝑔𝑘−1,𝜎(2𝑘−1)) is equal to
2𝑘−1∏︀
𝑗=1

𝜙(𝑔𝑘−1,𝑗) = 𝑒. Indeed in
2𝑘−1∏︀
𝑗=1

𝜙(𝑔𝑘−1,𝑗) and as in
2𝑘−1∏︀
𝑗=1

𝜙(𝑔𝑘−1,𝑗𝑔𝑘−1,𝜎(𝑗)) are

the same v.p. from 𝑋𝑘−1 regardless of such 𝜎 as described above.
The same is true for right half of 𝑋𝑘−1. Therefore the equality (9) holds.

Note that such product
2𝑘−1∏︀
𝑗=1

𝜙(𝑔𝑘−1,𝑗) is homomorphic image of (𝑔𝑙,1𝑔𝑙,𝜎(1), ...,

𝑔𝑙,(2𝑙)𝑔𝑙𝜎(2𝑙)), where 𝑙 = 𝑘 − 1, as an element of 𝐺′
𝑘(𝑙) after mapping (7).

If 𝑔01 = 𝑒, where 𝑔01 is root permutation of 𝜎 then 𝜎 can be decomposed as
𝜎 = (𝜎11, 𝜎12), where 𝜎11, 𝜎12 are root permutations in 𝑣11 and 𝑣12. As a result
𝑠2 has a form

(︁
(𝑠𝑙1𝑠𝑙𝜎(1), ..., 𝑠𝑙𝜎(2𝑙−1))𝜎

2
1, (𝑠𝑙2𝑙−1+1𝑠𝑙𝜎(2𝑙−1+1), ..., 𝑠𝑙(2𝑙)𝑠𝑙𝜎(2𝑙))𝜎

2
2

)︁
,

where 𝑙 = 𝑘−1. As a result of action of 𝜎11 all states of 𝑙-th level with number
1 ≤ 𝑗 ≤ 2𝑘−2 permutes in coordinate from 1 to 2𝑘−2 the other are fixed. The
action of 𝜎11 is analogous.

It corresponds to the next form of element from 𝐺′
𝑘(𝑙):

(𝑔𝑙1𝑔𝑙𝜎1(1), ..., 𝑔𝑙𝜎1(2𝑙−1)), (𝑔𝑙2𝑙−1+1𝑔𝑙𝜎2(2𝑙−1+1), ..., 𝑔𝑙(2𝑙)𝑔𝑙𝜎2(2𝑙)).

Therefore the product of form

2𝑘−2∏︁
𝑗=1

𝜙(𝑔𝑘−1,𝑗𝑔𝑙𝜎(𝑗)) =
2𝑘−1∏︁

𝑗=2𝑘−2+1

𝜙(𝑔2𝑘−1,𝑗) = 𝑒,

because of 𝑔2𝑘−1,𝑗 = 𝑒. Thus, characteristic equation (9) of 𝑘 − 1 level holds.
The conditions (8), (9) for every 𝑠2, 𝑠 ∈ 𝐺𝑘 hold so it holds for their product

that is equivalent to conditions hold for every commutator.

Definition 3. We define a subdirect product of group 𝐺𝑘−1 with itself by equip-
ping it with condition (8) and (9) of index parity on all of 𝑘 − 1 levels.

Corollary 9. The subdirect product 𝐺𝑘−1 � 𝐺𝑘−1 is defined by 𝑘 − 2 outer
relations on level subgroups. The order of 𝐺𝑘−1 �𝐺𝑘−1 is 22

𝑘−𝑘−2.

Proof. We specify a subdirect product for the group 𝐺𝑘−1 � 𝐺𝑘−1 by
using (𝑘 − 2) conditions for the subgroup levels. Each 𝐺𝑘−1 has even index
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on 𝑘 − 2-th level, it implies that its relation for 𝑙 = 𝑘 − 1 holds automatically.
This occurs because of the conditions of parity for the index of the last level is
characteristic of each of the multipliers 𝐺𝑘−1. Therefore It is not an essential
condition for determining a subdirect product.

Thus, to specify a subdirect product in the group 𝐺𝑘−1 � 𝐺𝑘−1, there
are obvious only 𝑘 − 2 outer conditions on subgroups of levels. Any of such
conditions reduces the order of 𝐺𝑘−1 × 𝐺𝑘−1 in 2 times. Hence, taking into
account that the order of 𝐺𝑘−1 is 22

𝑘−1−2, the order of 𝐺𝑘−1 � 𝐺𝑘−1 as a

subgroup of 𝐺𝑘−1×𝐺𝑘−1 the following: |𝐺𝑘−1 �𝐺𝑘−1| =
(︁

22
𝑘−1−2

)︁2
: 2𝑘−2 =

22
𝑘−4 : 2𝑘−2 = 22

𝑘−𝑘−2. Thus, we use 𝑘 − 2 additional conditions on level
subgroup to define the subdirect product 𝐺𝑘−1�𝐺𝑘−1, which contain 𝐺′

𝑘 as a
proper subgroup of 𝐺𝑘. Because according to the conditions, which are realized
in the commutator of 𝐺′

𝑘, (9) and (8) indexes of levels are even.

Corollary 10. A commutator 𝐺′
𝑘 is embedded as a normal subgroup in 𝐺𝑘−1�

𝐺𝑘−1.

Proof. A proof of injective embedding 𝐺′
𝑘 into 𝐺𝑘−1 � 𝐺𝑘−1 immedi-

ately follows from last item of proof of Corollary 9. The minimality of 𝐺′
𝑘

as a normal subgroup of 𝐺𝑘 and injective embedding 𝐺′
𝑘 into 𝐺𝑘−1 � 𝐺𝑘−1

immediately entails that 𝐺′
𝑘 ▷ 𝐺𝑘−1 �𝐺𝑘−1.

Theorem 5. A commutator of 𝐺𝑘 has form 𝐺′
𝑘 = 𝐺𝑘−1�𝐺𝑘−1, where the sub-

direct product is defined by relations (8) and (9). The order of 𝐺′
𝑘 is 22

𝑘−𝑘−2.

Proof. Since according to Statement 2 (𝑔1, 𝑔2) as elements of 𝐺′
𝑘 also

satisfy relations (8) and (9), which define the subdirect product 𝐺𝑘−1�𝐺𝑘−1.
Also condition 𝑔1𝑔2 ∈ 𝐵′

𝑘−1 gives parity of permutation which defined by
(𝑔1, 𝑔2) because 𝐵′

𝑘−1 contains only element with even index of level [16]. The
group 𝐺′

𝑘 has 2 disjoint domains of transitivity so 𝐺′
𝑘 has the structure of a

subdirect product of 𝐺𝑘−1 which acts on this domains transitively. Thus, all
elements of 𝐺′

𝑘 satisfy the conditions (8), (9) which define subdirect product
𝐺𝑘−1�𝐺𝑘−1. Hence𝐺′

𝑘 < 𝐺𝑘−1�𝐺𝑘−1 but𝐺′
𝑘 can be equipped by some other

relations, therefore, the presence of isomorphism has not yet been proved. For
proving revers inclusion we have to show that every element from 𝐺𝑘−1�𝐺𝑘−1

can be expressed as word 𝑎−1𝑏−1𝑎𝑏, where 𝑎, 𝑏 ∈ 𝐺𝑘. Therefore, it suffices to
show the reverse inclusion. For this goal we use that 𝐺′

𝑘 < 𝐺𝑘−1 �𝐺𝑘−1. As
it was shown in [16] that the order of 𝐺𝑘 is 22

𝑘−2.
As it was shown above, 𝐺′

𝑘 has 𝑘 new conditions relatively to 𝐺𝑘. Each
condition is stated on some level-subgroup. Each of these conditions reduces
an order of the corresponding level subgroup in 2 times, so the order of 𝐺′

𝑘 is
in 2𝑘 times lesser. On every 𝑋 𝑙, 𝑙 ≤ 𝑘 − 1, there is even number of active v.p.
by this reason, there is trivial permutation on 𝑋0.
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According to the Corollary 9, in the subdirect product 𝐺𝑘−1 �𝐺𝑘−1 there
are exactly 𝑘 − 2 conditions relatively to 𝐺𝑘−1 × 𝐺𝑘−1, which are for the
subgroups of levels. It has been shown that the relations (8), (9) are fulfilled
in 𝐺′

𝑘.
Let 𝛼𝑙𝑚, 0 ≤ 𝑙 ≤ 𝑘 − 1, 0 ≤ 𝑚 ≤ 2𝑙−1 be an automorphism from 𝐺𝑘

having only one active v.p. in 𝑣𝑙𝑚, and let 𝛼𝑙𝑚 have trivial permutations in
rest of the vertices. Recall that partial case of notation of form 𝛼𝑙𝑚 is the
generator 𝛼𝑙 := 𝛼𝑙1 of 𝐺𝑘 which was defined by us in [16] and denoted by
us as 𝛼𝑙. Note that the order of 𝛼𝑙𝑖, 0 ≤ 𝑙 ≤ 𝑘 − 1 is 2. Thus, 𝛼𝑗𝑖 =
𝛼−1
𝑗𝑖 . We choose a generating set consisting of the following 2𝑘 − 3 elements:

(𝛼1,1;2), 𝛼2,1, ..., 𝛼𝑘−1,1, 𝛼2,3, ..., 𝛼𝑘−1,2𝑘−2+1, where (𝛼1,1;2) is an automorphism
having exactly 2 active v.p. in 𝑣11 and 𝑣12. Product of the form (𝛼𝑗1𝛼𝑙1𝛼𝑗1)𝛼𝑙1

are denoted by 𝑃𝑙𝑚. In more details, 𝑃𝑙𝑚 = 𝛼𝑗𝑖𝛼𝑙𝑚𝛼𝑗𝑖𝛼𝑙𝑚, where 𝛼𝑗𝑖 ∈ 𝐺𝑘(𝑗).
Using a conjugation by generator 𝛼𝑗 , 0 ≤ 𝑗 < 𝑙 we can express any v.p. on 𝑙-
level, because (𝛼𝑗𝛼𝑙𝛼𝑗) = 𝛼𝑙2𝑙−𝑗−1+1. Consider the product 𝑃𝑙𝑗 = (𝛼𝑗𝛼𝑙𝛼𝑗)𝛼𝑙.

1. We need to show that every element of 𝐺𝑘−1�𝐺𝑘−1 can be constructed
as 𝑔−1ℎ−1𝑔ℎ, 𝑔, ℎ ∈ 𝐺𝑘. This proves the absence of other relations in
𝐺′

𝑘 except those that in the subdirect product 𝐺𝑘−1 � 𝐺𝑘−1. Thereby
we prove the embeddedness of 𝐺′

𝑘 in 𝐺𝑘−1�𝐺𝑘−1. We have to construct
an element of form 𝑃𝑘−1𝑃𝑘−2 · ... ·𝑃1𝑃0 as a product of elements of form

[𝑔, ℎ], where 𝑃𝑙 =
2𝑙∏︀
𝑖=1

𝑃𝑙𝑚 satisfying relations (8), (9).

2. We have to construct an arbitrary tuple of 2 active v.p. on 𝑋 𝑙 as
a product of several 𝑃𝑙. We use the generator 𝛼𝑙 and conjugating
it by 𝛼𝑗 , 𝑗 < 𝑙. It corresponds to the tuple of v.p. of the form
(𝑔𝑙1, 𝑒, ..., 𝑒, 𝑔𝑙𝑗 , 𝑒, ..., 𝑒), where 𝑔𝑙1, 𝑔𝑙𝑗 are non-trivial. Note that this tu-
ple (𝑔𝑙1, 𝑒, ..., 𝑒, 𝑔𝑙𝑗 , 𝑒, ..., 𝑒) is an element of direct product if we consider
as an element of 𝑆2 in vertices of 𝑋 𝑙. To obtain a tuple of v.p. of form
(𝑒, ..., 𝑒, 𝑔𝑙𝑚, 𝑒, ..., 𝑒, 𝑔𝑙𝑗 , 𝑒, ..., 𝑒) we multiply 𝑃𝑙𝑗 and 𝑃𝑙𝑚.

3. To obtain a tuple of v.p. with 2𝑚 active v.p. we construct
𝑚∏︀
𝑖=1

𝑃𝑙𝑗𝑖 , 𝑚 <

2𝑙 for varying 𝑖, 𝑗 < 2𝑘−2.

On the (𝑘 − 1)-th level we choose the generator 𝜏 which was defined in
[16] as 𝜏 = 𝜏𝑘−1, 1𝜏𝑘−1, 2𝑘−1 . Recall that it was shown in [16] how to express
any 𝜏𝑖𝑗 using 𝜏 , 𝜏𝑖,2𝑘−2 , 𝜏𝑗,2𝑘−2 , where 𝑖, 𝑗 < 2𝑘−2, as a product of commuta-
tors 𝜏𝑖𝑗 = 𝜏𝑖,2𝑘−2𝜏𝑗,2𝑘−2 = (𝛼−1

𝑖 𝜏−1
1,2𝑘−2𝛼𝑖𝜏𝑗,2𝑘−2). Here 𝜏𝑖,2𝑘−2 was expressed as

the commutator 𝜏𝑖,2𝑘−2 = 𝛼−1
𝑖 𝜏−1

1,2𝑘−2𝛼𝑖𝜏1,2𝑘−2 . Thus, we express all tuples of
elements satisfying to relations (8) and (9) by using only commutators of 𝐺𝑘.
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Thus, we get all tuples of each level subgroup elements satisfying the relations
(8) and (9). It means we express every element of each level subgroup by a
commutators. In particular to obtain a tuple of v.p. with 2𝑚 active v.p. on
𝑋𝑘−2 of 𝑣11𝑋 [𝑘−1], we will construct the product for 𝜏𝑖𝑗 for varying 𝑖, 𝑗 < 2𝑘−2.

Thus, all vertex labelings of automorphisms, which appear in the represen-
tation of 𝐺𝑘−1�𝐺𝑘−1 by portraits as the subgroup of 𝐴𝑢𝑡𝑋 [𝑘], are also in the
representation of 𝐺′

𝑘.
Since there are faithful representations of 𝐺𝑘−1�𝐺𝑘−1 and 𝐺′

𝑘 by portraits
of automorphisms from𝐴𝑢𝑡𝑋 [𝑘], which coincide with each other, then subgroup
𝐺′

𝑘 of 𝐺𝑘−1�𝐺𝑘−1 ≃ 𝐺′
𝑘 is equal to whole 𝐺𝑘−1�𝐺𝑘−1 ( i.e. 𝐺𝑘−1�𝐺𝑘−1 =

𝐺′
𝑘).
The archived results are confirmed by algebraic system GAP calculations.

For instance, |𝑆𝑦𝑙2𝐴8| = 26 = 22
3−2 and |(𝑆𝑦𝑙𝐴23)′| = 22

3−3−2 = 8. The
order of 𝐺2 is 4, the number of additional relations in subdirect product is
𝑘 − 2 = 3 − 2 = 1. Then we have the same result (4 · 4) : 21 = 8, which
confirms Theorem 5.

Example 1. Set 𝑘 = 4 then |(𝑆𝑦𝑙𝐴16)
′| = |(𝐺4)

′| = 1024, |𝐺3| = 64, since
𝑘 − 2 = 2, so according to our theorem above order of 𝑆𝑦𝑙2𝐴16 � 𝑆𝑦𝑙2𝐴16 is
defined by 2𝑘−2 = 22 relations, and by this reason is equal to (64·64) : 4 = 1024.
Thus, orders are coincides.

Example 2. The true order of (𝑆𝑦𝑙2𝐴32)
′ is 33554432 = 225, 𝑘 = 5. A number

of additional relations which define the subdirect product is 𝑘 − 2 = 3. Thus,
according to Theorem 5, | (𝑆𝑦𝑙2𝐴16�𝑆𝑦𝑙2𝐴16)

′ |= 214214 : 25−2 = 228 : 25−2 =
225.

According to calculations in GAP we have: 𝑆𝑦𝑙2𝐴7 ≃ 𝑆𝑦𝑙2𝐴6 ≃ 𝐷4. There-
fore its derived subgroup (𝑆𝑦𝑙2𝐴7)

′ ≃ (𝑆𝑦𝑙2𝐴6)
′ ≃ (𝐷4)

′ = 𝐶2.
The following structural law for Syllows 2-subgroups is typical. The struc-

ture of 𝑆𝑦𝑙2𝐴𝑛, 𝑆𝑦𝑙2𝐴𝑘 is the same. If for all 𝑛 and 𝑘 that have the same
multiple of 2 as multiplier in decomposition on 𝑛! and 𝑘! Thus, 𝑆𝑦𝑙2𝐴2𝑘 ≃
𝑆𝑦𝑙2𝐴2𝑘+1.

Example 3. 𝑆𝑦𝑙2𝐴7 ≃ 𝑆𝑦𝑙2𝐴6 ≃ 𝐷4, 𝑆𝑦𝑙2𝐴10 ≃ 𝑆𝑦𝑙2𝐴11 ≃ 𝑆𝑦𝑙2𝑆8 ≃
(𝐷4 ×𝐷4)o𝐶2. 𝑆𝑦𝑙2𝐴12 ≃ 𝑆𝑦𝑙2𝑆8�𝑆𝑦𝑙2𝑆4, by the same reasons that from the
proof of Corollary 9 its commutator subgroup is decomposed as (𝑆𝑦𝑙2𝐴12)

′ ≃
(𝑆𝑦𝑙2𝑆8)

′ × (𝑆𝑦𝑙2𝑆4)
′.

Lemma 7. In 𝐺′′
𝑘 the following equalities are true:
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2𝑙−2∏︁
𝑗=1

𝜙(𝑔𝑙𝑗) =
2𝑙−1∏︁

𝑗=2𝑙−2+1

𝜙(𝑔𝑙𝑗) =
2𝑙−1+2𝑙−2∏︁
𝑗=2𝑙−1+1

𝜙(𝑔𝑙𝑗) =

=
2𝑙∏︁

𝑗=2𝑙−1+2𝑙−2+1

𝜙(𝑔𝑙𝑗), 2 < 𝑙 < 𝑘

(11)

In case 𝑙 = 𝑘 − 1, the following conditions hold:

2𝑙−2∏︁
𝑗=1

𝜙(𝑔𝑙𝑗) =

2𝑙−1∏︁
𝑗=2𝑖−1+1

𝜙(𝑔𝑙𝑗) = 𝑒,

2𝑙−1+2𝑙−2∏︁
𝑗=2𝑙−1

𝜙(𝑔𝑙𝑗) =

2𝑙∏︁
𝑗=2𝑙−1+2𝑙−2

𝜙(𝑔𝑙𝑗) = 𝑒

(12)

In other terms, the subgroup 𝐺′′
𝑘 has an even index of any level of 𝑣11𝑋 [𝑘−2]

and of 𝑣12𝑋 [𝑘−2].

Proof. As a result of derivation of 𝐺′
𝑘, elements of 𝐺′′

𝑘(1) are trivial. Due
the fact that 𝐺′

𝑘 ≃ 𝐺𝑘−1 �𝐺𝑘−1, we can derivate 𝐺′
𝑘 by commponents. The

commutator of 𝐺𝑘−1 is already investigated in Theorem 5. As 𝐺2
𝑘−1 = 𝐺′

𝑘−1

by Corollary 7, it is more convenient to present a characteristic equalities in
the second commutator 𝐺′′

𝑘 ≃ 𝐺′
𝑘−1 � 𝐺′

𝑘−1 as equations in 𝐺2
𝑘−1 � 𝐺2

𝑘−1.
As shown above, for 2 ≤ 𝑙 < 𝑘 − 1, in 𝐺2

𝑘−1 the following equalities are true:

2𝑙−1∏︁
𝑗=1

𝜙(𝑔𝑙𝑗𝑔𝑙𝜎(𝑗)) =
2𝑙−1∏︁
𝑗=1

𝜙(𝑔𝑙𝑗)
2𝑙−1∏︁
𝑗=1

𝜙(𝑔𝑙𝜎(𝑗)) =

=

2𝑙−1∏︁
𝑗=1

𝜙(𝑔𝑙𝑗)

2𝑙−1∏︁
𝑗=1

𝜙(𝑔𝑙𝑖) =

2𝑙−1∏︁
𝑗=1

𝜙(𝑔2𝑙𝑗) = 𝑒

(13)

2𝑙−2∏︁
𝑗=1

𝜙(𝑔𝑙𝑗) =
2𝑙−1∏︁

𝑗=2𝑙−2+1

𝜙(𝑔𝑙𝑗) =
2𝑙−1+2𝑙−2∏︁
𝑗=2𝑙−1+1

𝜙(𝑔𝑙𝑗) =
2𝑙∏︁

𝑗=2𝑙−1+2𝑙−2+1

𝜙(𝑔𝑙𝑗). (14)

The equality (14) is true because of it is the initial group 𝐺′
𝑘 ≃ 𝐺𝑘−1�𝐺𝑘−1.

The equalities
2𝑙−1+2𝑙−2∏︁
𝑗=2𝑙−1+1

𝜙(𝑔𝑙𝑗) =

2𝑙∏︁
𝑗=2𝑙−1+2𝑙−2+1

𝜙(𝑔𝑙𝑗)

are right for elements of second group 𝐺′
𝑘−1, since elements of the original

group are endowed with this conditions.
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Upon a squaring of 𝐺′
𝑘 any element of 𝐺′

𝑘(𝑙), satisfies the equality (14)
in addition to satisfying the previous conditions (11) because of (𝐺𝑘−1(𝑙))

2 =
𝐺′

𝑘−1(𝑙). The similar conditions appears in (𝐺′
𝑘−1(𝑘 − 2))2 after squaring of

𝐺′
𝑘. Thus, taking into account the characteristic equations of 𝐺′

𝑘−1(𝑙), the
subgroup (𝐺′

𝑘−1(𝑘 − 2))2 satisfies the equality:

2𝑘−3∏︁
𝑗=1

𝜙(𝑔𝑙𝑗) =
2𝑘−2∏︁

𝑗=2𝑘−3+1

𝜙(𝑔𝑙𝑗) = 𝑒,
2𝑘−2+2𝑘−3∏︁
𝑗=2𝑘−2+1

𝜙(𝑔𝑙𝑗) =
2𝑘−1∏︁

𝑗=2𝑘−1+2𝑘−2+1

𝜙(𝑔𝑙𝑗) = 𝑒.

(15)

Taking into account the structure 𝐺′
𝑘 ≃ 𝐺𝑘−1 � 𝐺𝑘−1 we obtain after

derivation 𝐺′′
𝑘 ≃ (𝐺𝑘−2�𝐺𝑘−2)� (𝐺𝑘−2�𝐺𝑘−2). With respect to conditions

8, 9 in the subdirect product we have that the order of 𝐺′′
𝑘 is 22

𝑘−𝑘−2 : 22𝑘−3 =
22

𝑘−3𝑘+1 because on every level 2 ≤ 𝑙 < 𝑘 order of level subgroup 𝐺′′
𝑘(𝑙) is in

4 times lesser then order of 𝐺′
𝑘(𝑙). On the 1-st level one new condition arises

that reduce order of 𝐺′
𝑘(1) in 2 times. Totally we have 2(𝑘− 2) + 1 = 2𝑘− 3

new conditions in comparing with 𝐺′
𝑘.

Example 4. Size of (𝐺′′
4) is 32, a size of direct product (𝐺′

3)
2 is 64, but, due

to relation on second level of 𝐺′′
𝑘, the direct product (𝐺′

3)
2 transforms into the

subdirect product 𝐺′
3 � 𝐺′

3 that has 2 times less feasible combination on 𝑋2.
The number of additional relations in the subdirect product is 𝑘−3 = 4−3 = 1.
Thus the order of product is reduced in 21 times.

Example 5. The commutator subgroup of 𝑆𝑦𝑙′2(𝐴8) consists of elements:

{𝑒, (13)(24)(57)(68), (12)(34), (14)(23)(57)(68), (56)(78),

(13)(24)(58)(67), (12)(34)(56)(78), (14)(23)(58)(67)}.

The commutator 𝑆𝑦𝑙′2(𝐴8) ≃ 𝐶3
2 that is an elementary abelian 2-group of order

8. This fact confirms our formula 𝑑(𝐺𝑘) = 2𝑘− 3, because 𝑘 = 3 and 𝑑(𝐺𝑘) =
2𝑘 − 3 = 3. A minimal generating set of 𝑆𝑦𝑙′2(𝐴8) consists of 3 generators:
(1, 3)(2, 4)(5, 7)(6, 8), (1, 2)(3, 4), (1, 3)(2, 4)(5, 8)(6, 7).

Example 6. The minimal generating set of 𝑆𝑦𝑙′2(𝐴16) consists of 5 (that is
2 · 4 − 3) generators:

(1, 4, 2, 3)(5, 6)(9, 12)(10, 11), (1, 4)(2, 3)(5, 8)(6, 7), (1, 2)(5, 6),

(1, 7, 3, 5)(2, 8, 4, 6)(9, 14, 12, 16)(10, 13, 11, 15),

(1, 7)(2, 8)(3, 6)(4, 5)(9, 16, 10, 15)(11, 14, 12, 13).
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Example 7. Minimal generating set of 𝑆𝑦𝑙′2(𝐴32) consists of 7 (that is 2·5−3)
generators:

(23, 24)(31, 32), (1, 7)(2, 8)(3, 5, 4, 6)(11, 12)(25, 32)(26, 31)(27, 29)(28, 30),

(3, 4)(5, 8)(6, 7)(13, 14)(23, 24)(27, 28)(29, 32)(30, 31),

(7, 8)(15, 16)(23, 24)(31, 32),

(1, 9, 7, 15)(2, 10, 8, 16)(3, 11, 5, 13)(4, 12, 6, 14)(17, 29, 22, 27, 18, 30, 21, 28)

(19, 32, 23, 26, 20, 31, 24, 25), (1, 5, 2, 6)(3, 7, 4, 8)(9, 15)(10, 16)(11, 13)×
(12, 14)(19, 20)(21, 24, 22, 23)(29, 31)(30, 32), (3, 4)(5, 8)(6, 7)(9, 11, 10, 12)×

(13, 14)(15, 16)(17, 23, 20, 22, 18, 24, 19, 21)(25, 29, 27, 32, 26, 30, 28, 31).

This confirms our formula of minimal generating set size 2 · 𝑘 − 3.

4. Conclusion

The size of minimal generating set for commutator of Sylow 2-subgroup of
alternating group 𝐴2𝑘 was proven is equal to 2𝑘 − 3.

A new approach to presentation of Sylow 2-subgroups of alternating group
𝐴2𝑘 was applied. As a result the short proof of a fact that commutator width of
Sylow 2-subgroups of alternating group 𝐴2𝑘 , permutation group 𝑆2𝑘 and Sylow
𝑝-subgroups of 𝑆𝑦𝑙2𝐴𝑝𝑘 (𝑆𝑦𝑙2𝑆𝑝𝑘) are equal to 1 was obtained. Commutator
width of permutational wreath product 𝐵 ≀ 𝐶𝑛 were investigated.
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Скуратовський Р. В.
Мiнiмальна система твiрних комутанта силовських 2-пiдгруп знакозмiнної
групи i їх структура

Резюме

Знайдено мiнiмальну систему твiрних для комутанта силовських 2-пiдгруп знакозмiнної
групи. Дослiджено структуру комутанта силовських 2-пiдгруп знакозмiнної групи 𝐴2𝑘 .

Показано, що (𝑆𝑦𝑙2𝐴2𝑘 )
2 = 𝑆𝑦𝑙′2𝐴2𝑘 , 𝑘 > 2.

Доведено, що довжина по комутатора довiльного елемента iтерiрованого вiнцевого
добутку циклiчних груп 𝐶𝑝𝑖 , 𝑝𝑖 ∈ N дорiвнює 1. Знайдена ширину по коммутанту
прямої границi вiнцевого добутку циклiчних груп. У данiй статтi знайденi верхнi оцiнки
ширини по комутанту (𝑐𝑤(𝐺)) [1] вiнцевого добутку груп.

Розглянуто рекурсивне представлення силовских 2-Пiдгрупп 𝑆𝑦𝑙2(𝐴2𝑘 ) з 𝐴2𝑘 . В
результатi отримано коротке доведення того, що ширина по комутанту силовських 2-
пiдгруп груп 𝐴2𝑘 i 𝑆2𝑘 рiвна 1.

Дослiджено комутаторна ширина перестановочного сплетення 𝐵 ≀ 𝐶𝑛. Знайдена
верхня оцiнка ширини по коммутанта сплетення груп дiючих перестановками — 𝐵 ≀𝐶𝑛

для довiльної групи 𝐵.
Ключовi слова: вiнцевий добуток, мiнiмальна система твiрних комутанта силов-
ських 2-пiдгруп знакозмiнної групи, ширина по комутанту силовських 𝑝-пiдгруп, ко-
мутант силовських 2-пiдгруп знакозмiнної групи.

Скуратовский Р. В.
Минимальная система образующих коммутанта силовских 2-подгрупп зна-
копеременной группы и их структура

Резюме

Найдено минимальная система образующих для коммутанта силовских 2-подгрупп зна-
копеременной группы. Исследована структура коммутаторной подгруппы силовских 2-
подгрупп знакопеременной группы 𝐴2𝑘 .

Показано, что (𝑆𝑦𝑙2𝐴2𝑘 )
2 = 𝑆𝑦𝑙′2𝐴2𝑘 , 𝑘 > 2.

Доказано, что длина по коммутатора произвольного элемента итерированого спле-
тения циклических групп 𝐶𝑝𝑖 , 𝑝𝑖 ∈ N равна 1. Найдена ширина по коммутанту прямого
предела сплетения циклических групп. В данной статье представлены верхние оценки
ширины коммутатора (𝑐𝑤(𝐺)) [1] сплетения групп.

Рассмотрено рекурсивное представление силовских 2-подгрупп 𝑆𝑦𝑙2(𝐴2𝑘 ) из 𝐴2𝑘 . В
результате получено краткое доказательство того, что ширина коммутатора силовских
2-подгрупп группы 𝐴2𝑘 , группы перестановок 𝑆2𝑘 .

Исследована коммутаторная ширина перестановочного сплетения 𝐵 ≀ 𝐶𝑛. Найдена
верхняя оценка ширины по коммутанту сплетения групп действующих перестановками
— 𝐵 ≀ 𝐶𝑛 для произвольной группы 𝐵.
Ключевые слова: сплетение групп, минимальная система образующих коммутанта
силовских 2-подгрупп знакопеременной группы, ширина по коммутанту силовских 𝑝-
подгрупп, коммутант силовских 2-подгрупп знакопеременной группы.
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