UDC 512.54, 512.53

R. V. Skuratovskii
 NTUU, KPI, Kiev

MINIMAL GENERATING SET OF THE COMMUTATOR SUBGROUP OF SYLOW 2-SUBGROUPS OF ALTERNATING GROUP AND ITS STRUCTURE

The size of a minimal generating set for the commutator subgroup of Sylow 2-subgroups of alternating group is found. The structure of commutator subgroup of Sylow 2-subgroups of the alternating group $A_{2^{k}}$ is investigated.

It is shown that $\left(S y l_{2} A_{2^{k}}\right)^{2}=S y l_{2}^{\prime} A_{2^{k}}, k>2$.
It is proved that the commutator length of an arbitrary element of the iterated wreath product of cyclic groups $C_{p_{i}}, p_{i} \in \mathbb{N}$ equals to 1 . The commutator width of direct limit of wreath product of cyclic groups is found. This paper presents upper bounds of the commutator width $(c w(G))$ [1] of a wreath product of groups.

A recursive presentation of Sylows 2-subgroups $\operatorname{Syl}_{2}\left(A_{2^{k}}\right)$ of $A_{2^{k}}$ is introduced. As a result the short proof that the commutator width of Sylow 2-subgroups of alternating group $A_{2^{k}}$, permutation group $S_{2^{k}}$ and Sylow p-subgroups of $S y l_{2} A_{p^{k}}\left(S y l_{2} S_{p^{k}}\right)$ are equal to 1 is obtained.

A commutator width of permutational wreath product $B \backslash C_{n}$ is investigated. An upper bound of the commutator width of permutational wreath product B 亿 C_{n} for an arbitrary group B is found.
MSC: 20B27, 20E08, 20B22, 20B35,20F65,20B07.
Key words: wreath product of group, minimal generating set of commutator subgroup of syllow 2-subgroups groups, commutator width of wreath product, commutator width of Sylow p-subgroups, commutator subgroup of alternating group.
DOI: 10.18524/2519-206x.2019.2(34). 190058.

1. Introduction

Meldrum J. [2] briefly considered one form of commutators of the wreath product A < . In order to obtain a more detailed description of this form, we take into account the commutator width $(c w(G))$ as presented in work of Muranov A. [1].

As well known the first example of a group G with $c w(G)>1$ was given by Fite [4]. The smallest finite examples of such groups are groups of order 96 , there's two of them, nonisomorphic to each other, were given by Guralnick [23].

We deduce an estimation for commutator width of wreath product of groups C_{n} 乙 B taking in consideration a $c w(B)$ of passive group B. A form of commutators of wreath product A \& B that was shortly considered in [2]. The form of commutator presentation [2] is proposed by us as wreath recursion [9] and commutator width of it was studied. We impose more weak condition
on the presentation of wreath product commutator then it was imposed by J. Meldrum.

In this paper we continue a researches which was stared in [16; 17]. We find a minimal generating set and the structure for commutator subgroup of $S y l_{2} A_{2^{k}}$.

A research of commutator-group serve to decision of inclusion problem [5] for elements of $S y l_{2} A_{2^{k}}$ in its derived subgroup $\left(S y l_{2} A_{2^{k}}\right)^{\prime}$. It was known that, the commutator width of iterated wreath products of nonabelian finite simple groups is bounded by an absolute constant [3; 4]. But it was not proven that commutator subgroup of $\sum_{i=1}^{k} \mathcal{C}_{p_{i}}$ consists of commutators. We generalize the passive group of this wreath product to any group B instead of only wreath product of cyclic groups and obtain an exact commutator width.

Also we are going to prove that the commutator width of Sylows p subgroups of symmetric and alternating groups $p \geq 2$ is 1 .

The (permutational) wreath product $H \imath G$ is the semidirect product $H^{X} \lambda$ G, where G acts on the direct power H^{X} by the respective permutations of the direct factors. The group C_{p} or $\left(C_{p}, X\right)$ is equipped with a natural action by the left shift on $X=\{1, \ldots, p\}, p \in \mathbb{N}$. As well known that a wreath product of permutation groups is associative construction.

The multiplication rule of automorphisms g, h which presented in form of the wreath recursion [6] $g=\left(g_{(1)}, g_{(2)}, \ldots, g_{(d)}\right) \sigma_{g}, h=\left(h_{(1)}, h_{(2)}, \ldots, h_{(d)}\right) \sigma_{h}$, is given by the formula:

$$
g \cdot h=\left(g_{(1)} h_{\left(\sigma_{g}(1)\right)}, g_{(2)} h_{\left(\sigma_{g}(2)\right)}, \ldots, g_{(d)} h_{\left(\sigma_{g}(d)\right)}\right) \sigma_{g} \sigma_{h} .
$$

We define σ as $(1,2, \ldots, p)$ where p is defined by context.
The set X^{*} is naturally a vertex set of a regular rooted tree, i.e. a connected graph without cycles and a designated vertex v_{0} called the root, in which two words are connected by an edge if and only if they are of form v and $v x$, where $v \in X^{*}, x \in X$. The set $X^{n} \subset X^{*}$ is called the n-th level of the tree X^{*} and $X^{0}=\left\{v_{0}\right\}$. We denote by $v_{j i}$ the vertex of X^{j}, which has the number i. Note that the unique vertex $v_{k, i}$ corresponds to the unique word v in alphabet X. For every automorphism $g \in A u t X^{*}$ and every word $v \in X^{*}$ define the section (state) $g_{(v)} \in$ Aut X^{*} of g at v by the rule: $g_{(v)}(x)=y$ for $x, y \in X^{*}$ if and only if $g(v x)=g(v) y$. The subtree of X^{*} induced by the set of vertices $\cup_{i=0}^{k} X^{i}$ is denoted by $X^{[k]}$. The restriction of the action of an automorphism $g \in A u t X^{*}$ to the subtree $X^{[l]}$ is denoted by $\left.g_{(v)}\right|_{X^{[l]}}$. A restriction $\left.g_{\left(v_{i j}\right)}\right|_{X^{[1]}}$ is called the vertex permutation (v.p.) of g in a vertex $v_{i j}$ and denoted by $g_{i j}$. We call the endomorphism $\left.\alpha\right|_{v}$ restriction of g in a vertex v [6]. For example, if $|X|=2$ then we just have to distinguish active vertices, i.e., the vertices for which $\left.\alpha\right|_{v}$ is non-trivial.

Let us label every vertex of $X^{l}, 0 \leq l<k$ by sign 0 or 1 in relation to state of v.p. in it. Obtained by such way a vertex-labeled regular tree is an element of $\operatorname{Aut} X^{[k]}$. All undeclared terms are from $[7 ; 8]$.

Let us make some notations. For brevity, in form of wreath recursion we write a commutator as $[a, b]=a b a^{-1} b^{-1}$ that is inverse to $a^{-1} b^{-1} a b$. That does not reduce the generality of our reasoning. Since for convenience the commutator of two group elements a and b is denoted by $[a, b]=a b a^{-1} b^{-1}$, conjugation by an element b as

$$
a^{b}=b a b^{-1},
$$

We define G_{k} and B_{k} recursively i.e.

$$
\begin{aligned}
& B_{1}=C_{2}, B_{k}=B_{k-1} \imath C_{2} \text { for } k>1 \\
& G_{1}=\langle e\rangle, G_{k}=\left\{\left(g_{1}, g_{2}\right) \pi \in B_{k} \mid g_{1} g_{2} \in G_{k-1}\right\} \text { for } k>1 .
\end{aligned}
$$

Note that $B_{k}=\sum_{i=1}^{k} C_{2}$.
The commutator length of an element g of the derived subgroup of a group G, denoted $\operatorname{clG}(g)$, is the minimal n such that there exist elements $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ in G such that $g=\left[x_{1}, y_{1}\right] \ldots\left[x_{n}, y_{n}\right]$. The commutator length of the identity element is 0 . The commutator width of a group G, denoted $c w(G)$, is the maximum of the commutator lengths of the elements of its derived subgroup $[G, G]$. We denote by $d(G)$ the minimal number of generators of the group G.

2. Main Results

Commutator width of Sylow 2-subgroups of $A_{2^{k}}$ and $S_{2^{k}}$.
The following Lemma imposes the Corollary 4.9 of [2] and it will be deduced from the corollary 4.9 with using in presentation elements in the form of wreath recursion.

Lemma 1. An element of form $\left(r_{1}, \ldots, r_{p-1}, r_{p}\right) \in W^{\prime}=\left(B \backslash C_{p}\right)^{\prime}$ iff product of all r_{i} (in any order) belongs to B^{\prime}, where $p \in \mathrm{~N}, p \geq 2$.

Proof. More details of our argument may be given as follows.

$$
w=\left(r_{1}, r_{2}, \ldots, r_{p-1}, r_{p}\right),
$$

where $r_{i} \in B$. If we multiply elements from a tuple $\left(r_{1}, \ldots, r_{p-1}, r_{p}\right)$, where $r_{i}=h_{i} g_{a(i)} h_{a b(i)}^{-1} g_{a b a^{-1}(i)}^{-1}, h, g \in B$ and $a, b \in C_{p}$, then we get a product

$$
\begin{equation*}
x=\prod_{i=1}^{p} r_{i}=\prod_{i=1}^{p} h_{i} g_{a(i)} h_{a b(i)}^{-1} g_{a b a^{-1}(i)}^{-1} \in B^{\prime}, \tag{1}
\end{equation*}
$$

where x is a product of corespondent commutators. Therefore, we can write $r_{p}=r_{p-1}^{-1} \ldots r_{1}^{-1} x$. We can rewrite element $x \in B^{\prime}$ as the product $x=$ $\prod_{j=1}^{m}\left[f_{j}, g_{j}\right], m \leq c w(B)$.

Note that we impose more weak condition on the product of all r_{i} to belongs to B^{\prime} then in Definition 4.5. of form $P(L)$ in [2], where the product of all r_{i} belongs to a subgroup L of B such that $L>B^{\prime}$.

In more detail deducing of our representation constructing can be reported in following way. If we multiply elements having form of a tuple $\left(r_{1}, \ldots, r_{p-1}, r_{p}\right)$, where $r_{i}=h_{i} g_{a(i)} h_{a b(i)}^{-1} g_{a b a-1(i)}^{-1}, h, g \in B$ and $a, b \in C_{p}$, then in case $c w(B)=0$ we obtain a product

$$
\begin{equation*}
\prod_{i=1}^{p} r_{i}=\prod_{i=1}^{p} h_{i} g_{a(i)} h_{a b(i)}^{-1} g_{a b a^{-1}(i)}^{-1} \in B^{\prime} . \tag{2}
\end{equation*}
$$

Note that if we rearrange elements in (1) as

$$
h_{1} h_{1}^{-1} g_{1} g_{2}^{-1} h_{2} h_{2}^{-1} g_{1} g_{2}^{-1} \ldots h_{p} h_{p}^{-1} g_{p} g_{p}^{-1}
$$

then by the reason of such permutations we obtain a product of corespondent commutators. Therefore, following equality holds true

$$
\begin{equation*}
\prod_{i=1}^{p} h_{i} g_{a(i)} h_{a b(i)}^{-1} g_{a b a^{-1}(i)}^{-1}=\prod_{i=1}^{p} h_{i} g_{i} h_{i}^{-1} g_{i}^{-1} x_{0}=\prod_{i=1}^{p} h_{i} h_{i}^{-1} g_{i} g_{i}^{-1} x \in B^{\prime} \tag{3}
\end{equation*}
$$

where x_{0}, x are a products of corespondent commutators. Therefore,

$$
\begin{equation*}
\left(r_{1}, \ldots, r_{p-1}, r_{p}\right) \in W^{\prime} \text { iff } r_{p-1} \cdot \ldots \cdot r_{1} \cdot r_{p}=x \in B^{\prime} . \tag{4}
\end{equation*}
$$

Thus, one element from states of wreath recursion $\left(r_{1}, \ldots, r_{p-1}, r_{p}\right)$ depends on rest of r_{i}. This dependence contribute that the product $\prod_{j=1}^{p} r_{j}$ for an arbitrary sequence $\left\{r_{j}\right\}_{j=1}^{p}$ belongs to B^{\prime}. Thus, r_{p} can be expressed as:

$$
r_{p}=r_{1}^{-1} \cdot \ldots \cdot r_{p-1}^{-1} x
$$

Denote a j-th tuple, which consists of a wreath recursion elements, by $\left(r_{j_{1}}, r_{j_{2}}, \ldots, r_{j_{p}}\right)$. Closedness by multiplication of the set of forms $\left(r_{1}, \ldots, r_{p-1}, r_{p}\right) \in W=\left(B 乙 C_{p}\right)^{\prime}$ follows from

$$
\begin{equation*}
\prod_{j=1}^{k}\left(r_{j 1} \ldots r_{j p-1} r_{j p}\right)=\prod_{j=1}^{k} \prod_{i=1}^{p} r_{j_{i}}=R_{1} R_{2} \ldots R_{k} \in B^{\prime} \tag{5}
\end{equation*}
$$

where $r_{j i}$ is i-th element from the tuple number $j, R_{j}=\prod_{i=1}^{p} r_{j i}, 1 \leq j \leq k$. As it was shown above $R_{j}=\prod_{i=1}^{p-1} r_{j i} \in B^{\prime}$. Therefore, the product (5) of R_{j}, $j \in\{1, \ldots, k\}$ which is similar to the product mentioned in [2], has the property $R_{1} R_{2} \ldots R_{k} \in B^{\prime}$ too, because of B^{\prime} is subgroup. Thus, we get a product of form (1) and the similar reasoning as above are applicable.

Let us prove the sufficiency condition. If the set K of elements satisfying the condition of this theorem, that all products of all r_{i}, where every i occurs in this forms once, belong to B^{\prime}, then using the elements of form

$$
\begin{aligned}
& \left(r_{1}, e, \ldots, e, r_{1}^{-1}\right), \ldots,\left(e, e, \ldots, e, r_{i}, e, r_{i}^{-1}\right), \ldots \\
& \quad\left(e, e, \ldots, e, r_{p-1}, r_{p-1}^{-1}\right),\left(e, e, \ldots, e, r_{1} r_{2} \cdot \ldots \cdot r_{p-1}\right)
\end{aligned}
$$

we can express any element of form $\left(r_{1}, \ldots, r_{p-1}, r_{p}\right) \in W=\left(B \backslash C_{p}\right)^{\prime}$. We need to prove that in such way we can express all element from W and only elements of W. The fact that all elements can be generated by elements of K follows from randomness of choice every $r_{i}, i<p$ and the fact that equality (1) holds so construction of r_{p} is determined.

Lemma 2. For any group B and integer $p \geq 2$ if $w \in\left(B \backslash C_{p}\right)^{\prime}$ then w can be represented as the following wreath recursion

$$
w=\left(r_{1}, r_{2}, \ldots, r_{p-1}, r_{1}^{-1} \ldots r_{p-1}^{-1} \prod_{j=1}^{k}\left[f_{j}, g_{j}\right]\right),
$$

where $r_{1}, \ldots, r_{p-1}, f_{j}, g_{j} \in B$ and $k \leq c w(B)$.
Proof. According to Lemma 1 we have the following wreath recursion

$$
w=\left(r_{1}, r_{2}, \ldots, r_{p-1}, r_{p}\right),
$$

where $r_{i} \in B$ and $r_{p-1} r_{p-2} \ldots r_{2} r_{1} r_{p}=x \in B^{\prime}$. Therefore we can write $r_{p}=$ $r_{1}^{-1} \ldots r_{p-1}^{-1} x$. We also can rewrite element $x \in B^{\prime}$ as product of commutators $x=\prod_{j=1}^{k}\left[f_{j}, g_{j}\right]$ where $k \leq c w(B)$.
Lemma 3. For any group B and integer $p \geq 2$ if $w \in\left(B \backslash C_{p}\right)^{\prime}$ is defined by the following wreath recursion

$$
w=\left(r_{1}, r_{2}, \ldots, r_{p-1}, r_{1}^{-1} \ldots r_{p-1}^{-1}[f, g]\right),
$$

where $r_{1}, \ldots, r_{p-1}, f, g \in B$ then we can represent w as the following commutator

$$
w=\left[\left(a_{1,1}, \ldots, a_{1, p}\right) \sigma,\left(a_{2,1}, \ldots, a_{2, p}\right)\right]
$$

where

$$
\begin{aligned}
a_{1, i} & =e, \text { for } 1 \leq i \leq p-1, \\
a_{2,1} & =\left(f^{-1}\right)^{r_{1}^{-1} \ldots r_{p-1}^{-1}}, \\
a_{2, i} & =r_{i-1} a_{2, i-1}, \text { for } 2 \leq i \leq p, \\
a_{1, p} & =g^{a_{2, p}^{-1}} .
\end{aligned}
$$

Proof. Let us to consider the following commutator

$$
\begin{aligned}
\kappa & =\left(a_{1,1}, \ldots, a_{1, p}\right) \sigma \cdot\left(a_{2,1}, \ldots, a_{2, p}\right) \cdot\left(a_{1, p}^{-1}, a_{1,1}^{-1}, \ldots, a_{1, p-1}^{-1}\right) \sigma^{-1} \cdot\left(a_{2,1}^{-1}, \ldots, a_{2, p}^{-1}\right) \\
& =\left(a_{3,1}, \ldots, a_{3, p}\right)
\end{aligned}
$$

where

$$
a_{3, i}=a_{1, i} a_{2,1+(i \bmod p)} a_{1, i}^{-1} a_{2, i}^{-1} .
$$

At first we compute the following

$$
a_{3, i}=a_{1, i} a_{2, i+1} a_{1, i}^{-1} a_{2, i}^{-1}=a_{2, i+1} a_{2, i}^{-1}=r_{i} a_{2, i} a_{2, i}^{-1}=r_{i}, \text { for } 1 \leq i \leq p-1 .
$$

Then we make some transformation of $a_{3, p}$:

$$
\begin{aligned}
a_{3, p} & =a_{1, p} a_{2,1} a_{1, p}^{-1} a_{2, p}^{-1} \\
& =\left(a_{2,1} a_{2,1}^{-1}\right) a_{1, p} a_{2,1} a_{1, p}^{-1} a_{2, p}^{-1} \\
& =a_{2,1}\left[a_{2,1}^{-1}, a_{1, p}\right] a_{2, p}^{-1} \\
& =a_{2,1} a_{2, p}^{-1} a_{2, p}\left[a_{2,1}^{-1}, a_{1, p}\right] a_{2, p}^{-1} \\
& =\left(a_{2, p} a_{2,1}^{-1}\right)^{-1}\left[\left(a_{2,1}^{-1}\right)^{a_{2, p}}, a_{1, p}^{a_{2, p}}\right] \\
& =\left(a_{2, p} a_{2,1}^{-1}\right)^{-1}\left[\left(a_{2,1}^{-1}\right)^{a_{2, p}} a_{2,1}^{a, 1}, a_{1, p} a_{2, p}\right] .
\end{aligned}
$$

Now we can see that the form of the commutator κ is similar to the form of w.
Let us make the following notation

$$
r^{\prime}=r_{p-1} \ldots r_{1} .
$$

We note that from the definition of $a_{2, i}$ for $2 \leq i \leq p$ it follows that

$$
r_{i}=a_{2, i+1} a_{2, i}^{-1}, \text { for } 1 \leq i \leq p-1 .
$$

Therefore

$$
\begin{aligned}
r^{\prime} & =\left(a_{2, p} a_{2, p-1}^{-1}\right)\left(a_{2, p-1} a_{2, p-2}^{-1}\right) \ldots\left(a_{2,3} a_{2,2}^{-1}\right)\left(a_{2,2} a_{2,1}^{-1}\right) \\
& =a_{2, p} a_{2,1}^{-1} .
\end{aligned}
$$

And then

$$
\left(a_{2, p} a_{2,1}^{-1}\right)^{-1}=\left(r^{\prime}\right)^{-1}=r_{1}^{-1} \ldots r_{p-1}^{-1} .
$$

And now we compute the following

$$
\begin{aligned}
\left(a_{2,1}^{-1}\right)^{a_{2, p} a_{2,1}^{-1}} & =\left(\left(\left(f^{-1}\right)^{r_{1}^{-1} \ldots r_{p-1}^{-1}}\right)^{-1}\right)^{r^{\prime}}=\left(f^{\left(r^{\prime}\right)^{-1}}\right)^{r^{\prime}}=f, \\
a_{1, p}^{a_{2, p}} & =\left(g^{a_{2, p}^{-1}}\right)^{a_{2, p}}=g .
\end{aligned}
$$

Finally we conclude that

$$
a_{3, p}=r_{1}^{-1} \ldots r_{p-1}^{-1}[f, g] .
$$

Thus, the commutator κ is presented exactly in the similar form as w has.
For future using we formulate previous Lemma for the case $p=2$.
Corollary 1. For any group B if $w \in\left(B \backslash C_{2}\right)^{\prime}$ is defined by the following wreath recursion

$$
w=\left(r_{1}, r_{1}^{-1}[f, g]\right)
$$

where $r_{1}, f, g \in B$ then we can represent w as commutator

$$
w=\left[\left(e, a_{1,2}\right) \sigma,\left(a_{2,1}, a_{2,2}\right)\right],
$$

where

$$
\begin{aligned}
& a_{2,1}=\left(f^{-1}\right)^{r_{1}^{-1}}, \\
& a_{2,2}=r_{1} a_{2,1}, \\
& a_{1,2}=g^{a_{2,2}^{-1}} .
\end{aligned}
$$

Lemma 4. For any group B and integer $p \geq 2$ inequality

$$
c w\left(B \swarrow C_{p}\right) \leq \max (1, c w(B))
$$

holds.
Proof. We can represent any $w \in\left(B \backslash C_{p}\right)^{\prime}$ by Lemma 1 with the following wreath recursion

$$
\begin{aligned}
w & =\left(r_{1}, r_{2}, \ldots, r_{p-1}, r_{1}^{-1} \ldots, r_{p-1}^{-1} \prod_{j=1}^{k}\left[f_{j}, g_{j}\right]\right) \\
& =\left(r_{1}, r_{2}, \ldots, r_{p-1}, r_{1}^{-1} \ldots, r_{p-1}^{-1}\left[f_{1}, g_{1}\right]\right) \cdot \prod_{j=2}^{k}\left[\left(e, \ldots, e, f_{j}\right),\left(e, \ldots, e, g_{j}\right)\right],
\end{aligned}
$$

where $r_{1}, \ldots, r_{p-1}, f_{j}, g_{j} \in B$ and $k \leq c w(B)$. Now by the Lemma 3 we can see that w can be represented as a product of $\max (1, c w(B))$ commutators.

Corollary 2. If $W=C_{p_{k}} \imath \ldots \prec C_{p_{1}}$ then $c w(W)=1$ for $k \geq 2$.
Proof. If $B=C_{p_{k}}$ $\left\langle C_{p_{k-1}}\right.$ then taking into consideration that $c w(B)>$ 0 (because $C_{p_{k}}$ \} C _ { p _ { k - 1 } } is not commutative group). Since Lemma 4 implies that $c w\left(C_{p_{k}} \backslash C_{p_{k-1}}\right)=1$ then according to the inequality $c w\left(C_{p_{k}} \backslash C_{p_{k-1}}\right.$ 亿 $\left.C_{p_{k-2}}\right) \leq \max (1, c w(B))$ from Lemma 4 we obtain $c w\left(C_{p_{k}} \backslash C_{p_{k-1}} \backslash C_{p_{k-2}}\right)=1$. Analogously if $W=C_{p_{k}} \prec \ldots \prec C_{p_{1}}$ and supposition of induction for $C_{p_{k}} \prec \ldots \prec C_{p_{2}}$ holds, then using an associativity of a permutational wreath product we obtain from the inequality of Lemma 4 and the equality $c w\left(C_{p_{k}} \downarrow \ldots \prec C_{p_{2}}\right)=1$ that $c w(W)=1$.

We define our partial ordered set M as the set of all finite wreath products of cyclic groups. We make of use directed set \mathbb{N}.

$$
\begin{equation*}
H_{k}={ }_{i=1}^{k} \mathcal{C}_{p_{i}} \tag{6}
\end{equation*}
$$

Moreover, it has already been proved in Corollary 3 that each group of the form $\sum_{i=1}^{k} \mathcal{C}_{p_{i}}$ has a commutator width equal to 1, i.e $c w\left(\sum_{i=1}^{k} \mathcal{C}_{p_{i}}\right)=1$. A partial order relation will be a subgroup relationship. Define the injective homomorphism $f_{k, k+1}$ from the $\sum_{i=1}^{k} \mathcal{C}_{p_{i}}$ into ${ }_{i=1}^{k+1} \mathcal{C}_{p_{i}}$ by mapping a generator of active group $\mathcal{C}_{p_{i}}$ of H_{k} in a generator of active group $\mathcal{C}_{p_{i}}$ of H_{k+1}. In more details the injective homomorphism $f_{k, k+1}$ is defined as $g \mapsto g(e, \ldots, e)$, where a generator $g \in{ }_{i=1}^{k} \mathcal{C}_{p_{i}}, g(e, \ldots, e) \in{ }_{i=1}^{k+1} \mathcal{C}_{p_{i}}$.

Therefore this is an injective homomorphism of H_{k} onto subgroup $\sum_{i=1}^{k} \mathcal{C}_{p_{i}}$ of H_{k+1}.

Corollary 3. The direct limit $\underset{\longrightarrow}{\lim } \sum_{i=1}^{k} \mathcal{C}_{p_{i}}$ of direct system $\left\langle f_{k, j}, \sum_{i=1}^{k} \mathcal{C}_{p_{i}}\right\rangle$ has commutator width 1.

Proof. We make the transition to the direct limit in the direct sys$\operatorname{tem}\left\langle f_{k, j}, \sum_{i=1}^{k} \mathcal{C}_{p_{i}}\right\rangle$ of injective mappings from chain $e \rightarrow \ldots \rightarrow \sum_{i=1}^{k} \mathcal{C}_{p_{i}} \rightarrow$ ${ }_{k+1} \quad{ }^{k+2}$ ${ }_{i=1}^{\mathcal{V}_{1}} \mathcal{C}_{p_{i}} \rightarrow{ }_{i=1}^{\ell_{1}} \mathcal{C}_{p_{i}} \rightarrow \ldots$

Since all mappings in chains are injective homomorphisms, it has a trivial kernel. Therefore the transition to a direct limit boundary preserves the property $c w(H)=1$, because each group H_{k} from the chain endowed by $c w\left(H_{k}\right)=1$.

The direct limit of the direct system is denoted by $\underset{\longrightarrow}{\lim } \sum_{i=1}^{k} \mathcal{C}_{p_{i}}$ and is defined as disjoint union of the H_{k} 's modulo a certain equivalence relation:

$$
\lim _{\longrightarrow i=1}^{k} \mathcal{C}_{p_{i}}=\underset{k}{\amalg}{ }_{i=1}^{k} \mathcal{C}_{p_{i}} / \sim .
$$

Since every element g of $\underset{\rightarrow}{\lim } \sum_{i=1}^{k} \mathcal{C}_{p_{i}}$ coincides with a correspondent element from some H_{k} of direct system, then by the injectivity of the mappings for g the property $c w\left(\sum_{i=1}^{k} \mathcal{C}_{p_{i}}\right)=1$ also holds. Thus, it holds for the whole $\underset{\longrightarrow}{\lim _{i=1}^{k}} \mathcal{C}_{p_{i}}$.

Corollary 4. For prime p and $k \geq 2$ commutator width $c w\left(\operatorname{Syl}_{p}\left(S_{p^{k}}\right)\right)=1$ and for prime $p>2$ and $k \geq 2$ commutator width $c w\left(\operatorname{Syl}_{p}\left(A_{p^{k}}\right)\right)=1$.

Proof. Since $S y l_{p}\left(S_{p^{k}}\right) \simeq \sum_{i=1}^{k} C_{p}$ see [10; 11], then $\operatorname{cw}\left(S y l_{p}\left(S_{p^{k}}\right)\right)=1$. As well known in case $p>2$ we have $S y l_{p} S_{p^{k}} \simeq S y l_{p} A_{p^{k}}$ see [16; 19], then $c w\left(\operatorname{Syl}_{p}\left(A_{p^{k}}\right)\right)=1$.
Proposition 1. The following inclusion $B_{k}^{\prime}<G_{k}$ holds.
Proof. Induction on k. For $k=1$ we have $B_{k}^{\prime}=G_{k}=\{e\}$. Let us fix some $g=\left(g_{1}, g_{2}\right) \in B_{k}^{\prime}$. Then $g_{1} g_{2} \in B_{k-1}^{\prime}$ by Lemma 1 . As $B_{k-1}^{\prime}<G_{k-1}$ by induction hypothesis therefore $g_{1} g_{2} \in G_{k-1}$ and by definition of G_{k} it follows that $g \in G_{k}$.

Corollary 5. The set G_{k} is a subgroup in the group B_{k}.
Proof. According to recursively definition of G_{k} and B_{k}, where $G_{k}=$ $\left\{\left(g_{1}, g_{2}\right) \pi \in B_{k} \mid g_{1} g_{2} \in G_{k-1}\right\} k>1, G_{k}$ is subset of B_{k} with condition $g_{1} g_{2} \in$ G_{k-1}. It is easy to check the closedness by multiplication elements of G_{k} with condition $g_{1} g_{2}, h_{1} h_{2} \in G_{k-1}$ because G_{k-1} is subgroup so $g_{1} g_{2} h_{1} h_{2} \in G_{k-1}$ too. A condition of existing inverse be verified trivial.

Lemma 5. For any $k \geq 1$ we have $\left|G_{k}\right|=\left|B_{k}\right| / 2$.
Proof. Induction on k. For $k=1$ we have $\left|G_{1}\right|=1=\left|B_{1} / 2\right|$. Every element $g \in G_{k}$ can be uniquely write as the following wreath recursion

$$
g=\left(g_{1}, g_{2}\right) \pi=\left(g_{1}, g_{1}^{-1} x\right) \pi
$$

where $g_{1} \in B_{k-1}, x \in G_{k-1}$ and $\pi \in C_{2}$. Elements g_{1}, x and π are independent therefore $\left|G_{k}\right|=2\left|B_{k-1}\right| \cdot\left|G_{k-1}\right|=2\left|B_{k-1}\right| \cdot\left|B_{k-1}\right| / 2=\left|B_{k}\right| / 2$.

Corollary 6. The group G_{k} is a normal subgroup in the group B_{k} i.e. $G_{k} \triangleleft B_{k}$.

Proof. There exists normal embedding (normal injective monomorphism) $\varphi: G_{k} \rightarrow B_{k}[20]$ such that $G_{k} \triangleleft B_{k}$. Indeed, according to Lemma index $\left|B_{k}: \quad G_{k}\right|=2$ so it is normal subgroup that is quotient subgroup ${ }^{B_{k}} / C_{2} \simeq G_{k}$.

Theorem 1. For any $k \geq 1$ we have $G_{k} \simeq \operatorname{Syl}_{2} A_{2^{k}}$.
Proof. Group C_{2} acts on the set $X=\{1,2\}$. Therefore we can recursively define sets X^{k} on which group B_{k} acts $X^{1}=X, X^{k}=X^{k-1} \times X$ for $\mathrm{k}>1$. At first we define $S_{2^{k}}=\operatorname{Sym}\left(X^{k}\right)$ and $A_{2^{k}}=\operatorname{Alt}\left(X^{k}\right)$ for all integer $k \geq 1$. Then $G_{k}<B_{k}<S_{2^{k}}$ and $A_{2^{k}}<S_{2^{k}}$.

We already know [16] that $B_{k} \simeq S y l_{2}\left(S_{2^{k}}\right)$. Since $\left|A_{2^{k}}\right|=\left|S_{2^{k}}\right| / 2$ therefore $\left|S y l_{2} A_{2^{k}}\right|=\left|S y l_{2} S_{2^{k}}\right| / 2=\left|B_{k}\right| / 2$. By Lemma 2 it follows that $\left|S y l_{2} A_{2^{k}}\right|=$ $\left|G_{k}\right|$. Therefore it is left to show that $G_{k}<\operatorname{Alt}\left(X^{k}\right)$.

Let us fix some $g=\left(g_{1}, g_{2}\right) \sigma^{i}$ where $g_{1}, g_{2} \in B_{k-1}, i \in\{0,1\}$ and $g_{1} g_{2} \in$ G_{k-1}. Then we can represent g as follows

$$
g=\left(g_{1} g_{2}, e\right) \cdot\left(g_{2}^{-1}, g_{2}\right) \cdot(e, e,) \sigma^{i}
$$

In order to prove this theorem it is enough to show that

$$
\left(g_{1} g_{2}, e\right),\left(g_{2}^{-1}, g_{2}\right),(e, e,) \sigma \in \operatorname{Alt}\left(X^{k}\right)
$$

Element $(e, e,) \sigma$ just switch letters x_{1} and x_{2} for all $x \in X^{k}$. Therefore $(e, e,) \sigma$ is product of $\left|X^{k-1}\right|=2^{k-1}$ transpositions and therefore $(e, e,) \sigma \in$ $\operatorname{Alt}\left(X^{k}\right)$.

Elements g_{2}^{-1} and g_{2} have the same cycle type. Therefore elements $\left(g_{2}^{-1}, e\right)$ and $\left(e, g_{2}\right)$ also have the same cycle type. Let us fix the following cycle decompositions

$$
\begin{aligned}
\left(g_{2}^{-1}, e\right) & =\sigma_{1} \cdot \ldots \cdot \sigma_{n} \\
\left(e, g_{2}\right) & =\pi_{1} \cdot \ldots \cdot \pi_{n} .
\end{aligned}
$$

Note that element $\left(g_{2}^{-1}, e\right)$ acts only on letters like x_{1} and element $\left(e, g_{2}\right)$ acts only on letters like x_{2}. Therefore we have the following cycle decomposition

$$
\left(g_{2}^{-1}, g_{2}\right)=\sigma_{1} \cdot \ldots \cdot \sigma_{n} \cdot \pi_{1} \cdot \ldots \cdot \pi_{n}
$$

So, element $\left(g_{2}^{-1}, g_{2}\right)$ has even number of odd permutations and then $\left(g_{2}^{-1}, g_{2}\right) \in \operatorname{Alt}\left(X^{k}\right)$.

Note that $g_{1} g_{2} \in G_{k-1}$ and $G_{k-1}=\operatorname{Alt}\left(X^{k-1}\right)$ by induction hypothesis. Therefore $g_{1} g_{2} \in \operatorname{Alt}\left(X^{k-1}\right)$. As elements $g_{1} g_{2}$ and $\left(g_{1} g_{2}, e\right)$ have the same cycle type then $\left(g_{1} g_{2}, e\right) \in \operatorname{Alt}\left(X^{k}\right)$.

As it was proven by the author in [16] Sylow 2-subgroup has structure $B_{k-1} \ltimes W_{k-1}$, where definition of B_{k-1} is the same that was given in [16].

Recall that it was denoted by W_{k-1} the subgroup of $A u t X^{[k]}$ such that has active states only on X^{k-1} and number of such states is even, i.e. $W_{k-1} \triangleleft$ $S t_{G_{k}}(k-1)$ [6]. It was proven that the size of W_{k-1} is equal to $2^{2^{k-1}-1}, k>1$ and its structure is $\left(C_{2}\right)^{2^{k-1}-1}$. The following structural theorem characterizing the group G_{k} was proved by us [16].
Theorem 2. A maximal 2-subgroup of Aut $X^{[k]}$ that acts by even permutations on X^{k} has the structure of the semidirect product $G_{k} \simeq B_{k-1} \ltimes W_{k-1}$ and isomorphic to $S y l_{2} A_{2^{k}}$.

Note that W_{k-1} is subgroup of stabilizer of X^{k-1} i.e. $W_{k-1}<S t_{A u t X^{[k]}}(k-$ 1) $\triangleleft A u t X^{[k]}$ and is normal too $W_{k-1} \triangleleft A u t X^{[k]}$, because conjugation keeps a cyclic structure of permutation so even permutation maps in even. Therefore such conjugation induce an automorphism of W_{k-1} and $G_{k} \simeq B_{k-1} \ltimes W_{k-1}$.

Remark 1. As a consequence, the structure founded by us in [16] fully consistent with the recursive group representation (which used in this paper) based on the concept of wreath recursion [9].

Theorem 3. Elements of B_{k}^{\prime} have the following form $B_{k}^{\prime}=\left\{[f, l] \mid f \in B_{k}, l \in\right.$ $\left.G_{k}\right\}=\left\{[l, f] \mid f \in B_{k}, l \in G_{k}\right\}$.

Proof. It is enough to show either $B_{k}^{\prime}=\left\{[f, l] \mid f \in B_{k}, l \in G_{k}\right\}$ or $B_{k}^{\prime}=\left\{[l, f] \mid f \in B_{k}, l \in G_{k}\right\}$ because if $f=[g, h]$ then $f^{-1}=[h, g]$.

We prove the proposition by induction on k. For the case $k=1$ we have $B_{1}^{\prime}=\langle e\rangle$.

Consider case $k>1$. According to Lemma 2 and Corollary 1 every element $w \in B_{k}^{\prime}$ can be represented as

$$
w=\left(r_{1}, r_{1}^{-1}[f, g]\right)
$$

for some $r_{1}, f \in B_{k-1}$ and $g \in G_{k-1}$ (by induction hypothesis). By the Corollary 1 we can represent w as commutator of

$$
\left(e, a_{1,2}\right) \sigma \in B_{k} \text { and }\left(a_{2,1}, a_{2,2}\right) \in B_{k},
$$

where

$$
\begin{aligned}
& a_{2,1}=\left(f^{-1}\right)^{r_{1}^{-1}}, \\
& a_{2,2}=r_{1} a_{2,1}, \\
& a_{1,2}=g^{a_{2,2}^{-1}} .
\end{aligned}
$$

If $g \in G_{k-1}$ then by the definition of G_{k} and Corollary 6 we obtain $\left(e, a_{1,2}\right) \sigma \in$ G_{k}.

Remark 2. Let us to note that Theorem 3 improve Corollary 4 for the case Syl $_{2} S_{2^{k}}$.

Proposition 2. If g is an element of the group B_{k} then $g^{2} \in B_{k}^{\prime}$.
Proof. Induction on k. We note that $B_{k}=B_{k-1} \backslash C_{2}$. Therefore we fix some element

$$
g=\left(g_{1}, g_{2}\right) \sigma^{i} \in B_{k-1} \prec C_{2},
$$

where $g_{1}, g_{2} \in B_{k-1}$ and $i \in\{0,1\}$. Let us to consider g^{2} then two cases are possible:

$$
g^{2}=\left(g_{1}^{2}, g_{2}^{2}\right) \text { or } g^{2}=\left(g_{1} g_{2}, g_{2} g_{1}\right)
$$

In second case we consider a product of coordinates $g_{1} g_{2} \cdot g_{2} g_{1}=g_{1}^{2} g_{2}^{2} x$. Since according to the induction hypothesis $g_{i}^{2} \in B_{k}^{\prime}, i \leq 2$ then $g_{1} g_{2} \cdot g_{2} g_{1} \in B_{k}^{\prime}$ also according to Lemma $1 x \in B_{k}^{\prime}$. Therefore a following inclusion holds $\left(g_{1} g_{2}, g_{2} g_{1}\right)=g^{2} \in B_{k}^{\prime}$. In first case the proof is even simpler because $g_{1}^{2}, g_{2}^{2} \in$ B^{\prime} by the induction hypothesis.

Lemma 6. If an element $g=\left(g_{1}, g_{2}\right) \in G_{k}^{\prime}$ then $g_{1}, g_{2} \in G_{k-1}$ and $g_{1} g_{2} \in$ B_{k-1}^{\prime}.

Proof. As $B_{k}^{\prime}<G_{k}$ therefore it is enough to show that $g_{1} \in G_{k-1}$ and $g_{1} g_{2} \in B_{k-1}^{\prime}$. Let us fix some $g=\left(g_{1}, g_{2}\right) \in G_{k}^{\prime}<B_{k}^{\prime}$. Then Lemma 1 implies that $g_{1} g_{2} \in B_{k-1}^{\prime}$.

In order to show that $g_{1} \in G_{k-1}$ we firstly consider just one commutator of arbitrary elements from G_{k}

$$
f=\left(f_{1}, f_{2}\right) \sigma, h=\left(h_{1}, h_{2}\right) \pi \in G_{k},
$$

where $f_{1}, f_{2}, h_{1}, h_{2} \in B_{k-1}, \sigma, \pi \in C_{2}$. The definition of G_{k} implies that $f_{1} f_{2}, h_{1} h_{2} \in G_{k-1}$.

If $g=\left(g_{1}, g_{2}\right)=[f, h]$ then

$$
g_{1}=f_{1} h_{i} f_{j}^{-1} h_{k}^{-1}
$$

for some $i, j, k \in\{1,2\}$. Then

$$
g_{1}=f_{1} h_{i} f_{j}\left(f_{j}^{-1}\right)^{2} h_{k}\left(h_{k}^{-1}\right)^{2}=\left(f_{1} f_{j}\right)\left(h_{i} h_{k}\right) x\left(f_{j}^{-1} h_{k}^{-1}\right)^{2},
$$

where x is product of commutators of f_{i}, h_{j} and f_{i}, h_{k}, hence $x \in B_{k-1}^{\prime}$.
It is enough to consider first product $f_{1} f_{j}$. If $j=1$ then $f_{1}^{2} \in B_{k-1}^{\prime}$ by Proposition 2 if $j=2$ then $f_{1} f_{2} \in G_{k-1}$ according to definition of G_{k}, the same is true for $h_{i} h_{k}$. Thus, for any i, j, k it holds $f_{1} f_{j}, h_{i} h_{k} \in G_{k-1}$. Besides that
a square $\left(f_{j}^{-1} h_{k}^{-1}\right)^{2} \in B_{k}^{\prime}$ according to Proposition 2. Therefore $g_{1} \in G_{k-1}$ because of Proposition 2 and Proposition 1, the same is true for g_{2}.

Now it lefts to consider the product of some $f=\left(f_{1}, f_{2}\right), h=\left(h_{1}, h_{2}\right)$, where $f_{1}, h_{1} \in G_{k-1}, f_{1} h_{1} \in G_{k-1}$ and $f_{1} f_{2}, h_{1} h_{2} \in B_{k-1}^{\prime}$

$$
f h=\left(f_{1} h_{1}, f_{2} h_{2}\right)
$$

Since $f_{1} f_{2}, h_{1} h_{2} \in B_{k-1}^{\prime}$ by imposed condition in this item and taking into account that $f_{1} h_{1} f_{2} h_{2}=f_{1} f_{2} h_{1} h_{2} x$ for some $x \in B_{k-1}^{\prime}$ then $f_{1} h_{1} f_{2} h_{2} \in B_{k-1}^{\prime}$ by Lemma 1. Other words closedness by multiplication holds and so according Lemma1 we have element of commutator G_{k}^{\prime}.

In the following theorem we prove 2 facts at once.
Theorem 4. The following statements are true.

1. An element $g=\left(g_{1}, g_{2}\right) \in G_{k}^{\prime}$ iff $g_{1}, g_{2} \in G_{k-1}$ and $g_{1} g_{2} \in B_{k-1}^{\prime}$.
2. Commutator subgroup G_{k}^{\prime} coincides with set of all commutators for $k \geq 1$

$$
G_{k}^{\prime}=\left\{\left[f_{1}, f_{2}\right] \mid f_{1} \in G_{k}, f_{2} \in G_{k}\right\} .
$$

Proof. For the case $k=1$ we have $G_{1}^{\prime}=\langle e\rangle$. So, further we consider the case $k \geq 2$.

Sufficiency of the first statement of this theorem follows from the Lemma 6. So, in order to prove necessity of the both statements it is enough to show that element

$$
w=\left(r_{1}, r_{1}^{-1} x\right)
$$

where $r_{1} \in G_{k-1}$ and $x \in B_{k-1}^{\prime}$, can be represented as a commutator of elements from G_{k}. By Proposition 3 we have $x=[f, g]$ for some $f \in B_{k-1}$ and $g \in G_{k-1}$. Therefore

$$
w=\left(r_{1}, r_{1}^{-1}[f, g]\right) .
$$

By the Corollary 1 we can represent w as a commutator of

$$
\left(e, a_{1,2}\right) \sigma \in B_{k} \text { and }\left(a_{2,1}, a_{2,2}\right) \in B_{k},
$$

where $a_{2,1}=\left(f^{-1}\right)^{r_{1}^{-1}}, a_{2,2}=r_{1} a_{2,1}, a_{1,2}=g^{a_{2,2}^{-1}}$. It only lefts to show that $\left(e, a_{1,2}\right) \sigma,\left(a_{2,1}, a_{2,2}\right) \in G_{k}$. Note the following
$a_{1,2}=g^{a_{2,2}^{-1}} \in G_{k-1}$ by Corollary 6.
$a_{2,1} a_{2,2}=a_{2,1} r_{1} a_{2,1}=r_{1}\left[r_{1}, a_{2,1}\right] a_{2,1}^{2} \in G_{k-1}$ by Proposition 1 and Proposition 2.

So we have $\left(e, a_{1,2}\right) \sigma \in G_{k}$ and $\left(a_{2,1}, a_{2,2}\right) \in G_{k}$ by the definition of G_{k}.
Proposition 3. For arbitrary $g \in G_{k}$ the inclusion $g^{2} \in G_{k}^{\prime}$ holds.
Proof. Induction on k : elements of G_{1}^{2} have form $(\sigma)^{2}=e$, where $\sigma=(1,2)$, so the statement holds. In general case, when $k>1$, the elements of G_{k} have the form $g=\left(g_{1}, g_{2}\right) \sigma^{i}, g_{1}, g_{2} \in B_{k-1}, i \in\{0,1\}$. Then we have two possibilities: $g^{2}=\left(g_{1}^{2}, g_{2}^{2}\right)$ or $g^{2}=\left(g_{1} g_{2}, g_{2} g_{1}\right)$.

Firstly we show that $g_{1}^{2} \in G_{k-1}, g_{2}^{2} \in G_{k-1}$. According to Proposition 2, we have $g_{1}^{2}, g_{2}^{2} \in B_{k-1}^{\prime}$ and according to Proposition 1, we have $B_{k-1}^{\prime}<G_{k-1}$ then using Theorem $4 g^{2}=\left(g_{1}^{2}, g_{2}^{2}\right) \in G_{k}$.

Consider the second case $g^{2}=\left(g_{1} g_{2}, g_{2} g_{1}\right)$. Since $g \in G_{k}$, then, according to the definition of G_{k} we have that $g_{1} g_{2} \in G_{k-1}$. By Proposition 1, and definition of G_{k}, we obtain

$$
\begin{gathered}
g_{2} g_{1}=g_{1} g_{2} g_{2}^{-1} g_{1}^{-1} g_{2} g_{1}=g_{1} g_{2}\left[g_{2}^{-1}, g_{1}^{-1}\right] \in G_{k-1} \\
g_{1} g_{2} \cdot g_{2} g_{1}=g_{1} g_{2}^{2} g_{1}=g_{1}^{2} g_{2}^{2}\left[g_{2}^{-2}, g_{1}^{-1}\right] \in B_{k-1}^{\prime}
\end{gathered}
$$

Note that $g_{1}^{2}, g_{2}^{2} \in B_{k-1}^{\prime}$ according to Proposition 2, then $g_{1}^{2} g_{2}^{2}\left[g_{2}^{-2}, g_{1}^{-1}\right] \in$ B_{k-1}^{\prime}. Since $g_{1} g_{2} \cdot g_{2} g_{1} \in B_{k-1}^{\prime}$ and $g_{1} g_{2}, g_{2} g_{1} \in G_{k-1}$, then, according to Lemma 6 , we obtain $g^{2}=\left(g_{1} g_{2}, g_{2} g_{1}\right) \in G_{k}^{\prime}$.

Statement 1. The commutator subgroup is a subgroup of G_{k}^{2} i.e. $G^{\prime}{ }_{k}<G_{k}^{2}$.
Proof. Indeed, an arbitrary commutator presented as product of squares. Let $a, b \in G$ and set that $x=a, y=a^{-1} b a, z=a^{-1} b^{-1}$. Then $x^{2} y^{2} z^{2}=$ $a^{2}\left(a^{-1} b a\right)^{2}\left(a^{-1} b^{-1}\right)^{2}=a b a^{-1} b^{-1}$, in more detail: $a^{2}\left(a^{-1} b a\right)^{2}\left(a^{-1} b^{-1}\right)^{2}=$ $a^{2} a^{-1} b a a^{-1} b a a^{-1} b^{-1} a^{-1} b^{-1}=$
$=a b b b^{-1} a^{-1} b^{-1}=[a, b]$. In such way we obtain all commutators and their products. Thus, we generate by squares the whole $G^{\prime}{ }_{k}$.

Corollary 7. For the Syllow subgroup $\left(S y l_{2} A_{2^{k}}\right)$ the following equalities Syl $l_{2}^{\prime} A_{2^{k}}=\left(S y l_{2} A_{2^{k}}\right)^{2}, \Phi\left(S y l_{2} A_{2^{k}}\right)=S y l_{2}^{\prime} A_{2^{k}}$, that are characteristic properties of special p-groups [22], are true.

Proof. As well known, for an arbitrary group (also by Statement 1) the following embedding $G^{\prime} \triangleleft G^{2}$ holds. In view of the above Proposition 3, a reverse embedding for G_{k} is true. Thus, the group $S y l_{2} A_{2^{k}}$ has some properties of special p-groups that is $P^{\prime}=\Phi(P)[22]$ because $G_{k}^{2}=G_{k}^{\prime}$ and so $\Phi\left(S y l_{2} A_{2^{k}}\right)=S y l_{2}^{\prime}\left(A_{2^{k}}\right)$.

Corollary 8. Commutator width of the group $S y l_{2} A_{2^{k}}$ equals to 1 for $k \geq 2$.
It immediately follows from item 2 of Theorem 4.

3. Minimal generating set

For the construction of minimal generating set we used the representation of elements of group G_{k} by portraits of automorphisms at restricted binary tree $A u t X^{k}$. For convenience we will identify elements of G_{k} with its faithful representation by portraits of automorphisms from Aut $X^{[k]}$.

We denote by $\left.A\right|_{l}$ a set of all functions a_{l}, such, that $\left[\varepsilon, \ldots, \varepsilon, a_{l}, \varepsilon, \ldots\right] \in$ $[A]_{l}$. Recall that, according to [21], l-coordinate subgroup $U<G$ is the following subgroup.

Definition 1. For an arbitrarry $k \in \mathbb{N}$ we call a k-coordinate subgroup $U<G$ a subgroup, which is determined by k-coordinate sets $[U]_{l}, l \in \mathbb{N}$, if this subgroup consists of all Kaloujnine's tableaux $a \in I$ for which $[a]_{l} \in[U]_{l}$.

We denote by $G_{k}(l)$ a level subgroup of G_{k}, which consists of the tuples of v.p. from $X^{l}, l<k-1$ of any $\alpha \in G_{k}$. We denote as $G_{k}(k-1)$ such subgroup of G_{k} that is generated by v.p., which are located on X^{k-1} and isomorphic to W_{k-1}. Note that $G_{k}(l)$ is in bijective correspondence (and isomorphism) with l-coordinate subgroup $[U]_{l}[21]$.

For any v.p. $g_{l i}$ in $v_{l i}$ of X^{l} we set in correspondence with $g_{l i}$ the permutation $\varphi\left(g_{l i}\right) \in S_{2}$ by the following rule:

$$
\varphi\left(g_{l i}\right)=\left\{\begin{align*}
(1,2), & \text { if } g_{l i} \neq e \tag{7}\\
e, & \text { if } g_{l i}=e
\end{align*}\right.
$$

Define a homomorphic map from $G_{k}(l)$ onto S_{2} with the kernel consisting of all products of even number of transpositions that belongs to $G_{k}(l)$. For instance, the element (12)(34) of $G_{k}(2)$ belongs to $\operatorname{ker} \varphi$. Hence, $\varphi\left(g_{l i}\right) \in S_{2}$.

Definition 2. We define the subgroup of l-th level as a subgroup generated by all possible vertex permutation of this level.

Statement 2. In $G_{k}{ }^{\prime}$, the following k equalities are true:

$$
\begin{equation*}
\prod_{l=1}^{2^{l}} \varphi\left(g_{l j}\right)=e, \quad 0 \leq l<k-1 \tag{8}
\end{equation*}
$$

For the case $i=k-1$, the following condition holds:

$$
\begin{equation*}
\prod_{j=1}^{2^{k-2}} \varphi\left(g_{k-1 j}\right)=\prod_{j=2^{k-2}+1}^{2^{k-1}} \varphi\left(g_{k-1 j}\right)=e . \tag{9}
\end{equation*}
$$

Thus, $G^{\prime}{ }_{k}$ has k new conditions on a combination of level subgroup elements, except for the condition of last level parity from the original group.

Proof. Note that the condition (8) is compatible with that were founded by R. Guralnik in [23], because as it was proved by author [16] $G_{k-1} \simeq B_{k-2} \rtimes$ \mathcal{W}_{k-1}, where $B_{k-2} \simeq{ }_{i=1}^{k-2} C_{2}^{(i)}$.

According to Property $1, G^{\prime}{ }_{k} \leq G_{k}^{2}$, so it is enough to prove the statement for the elements of G_{k}^{2}. Such elements, as it was described above, can be presented in the form $s=\left(s_{l 1}, \ldots, s_{l 2^{l}}\right) \sigma$, where $\sigma \in G_{l-1}$ and $s_{l i}$ are states of $s \in G_{k}$ in $v_{l i}, i \leq 2^{l}$. For convenience we will make the transition from the tuple $\left(s_{l 1}, \ldots, s_{l 2^{l}}\right)$ to the tuple $\left(g_{l 1}, \ldots, g_{l 2^{l}}\right)$. Note that there is the trivial vertex permutation $g_{l j}^{2}=e$ in the product of the states $s_{l j} \cdot s_{l j}$.

Since in $G^{\prime}{ }_{k}$ v.p. on X^{0} are trivial, so σ can be decomposed as $\sigma=$ $\left(\sigma_{11}, \sigma_{21}\right)$, where σ_{21}, σ_{22} are root permutations in v_{11} and v_{12}.

Consider the square of s. So we calculate squares $\left(\left(s_{l 1}, s_{l 2}, \ldots, s_{l 2^{l-1}}\right) \sigma\right)^{2}$. The condition (8) is equivalent to the condition that s^{2} has even index on each level. Two cases are feasible: if permutation $\sigma=e$, then $\left(\left(s_{l 1}, s_{l 2}, \ldots, s_{l 2^{l-1}}\right) \sigma\right)^{2}=\left(s_{l 1}^{2}, s_{l 2}^{2}, \ldots, s_{l 2^{l-1}}^{2}\right) e$, so after the transition from $\left(s_{l 1}^{2}, s_{l 2}^{2}, \ldots, s_{l 2^{l-1}}^{2}\right)$ to $\left(g_{l 1}^{2}, g_{l 2}^{2}, \ldots, g_{l 2^{l-1}}^{2}\right)$, we get a tuple of trivial permutations (e, \ldots, e) on X^{l}, because $g_{l j}^{2}=e$. In general case, if $\sigma \neq e$, after such transition we obtain $\left(g_{l 1} g_{l \sigma(2)}, \ldots, g_{l 2^{l-1}} g_{l \sigma\left(2^{l-1}\right)}\right) \sigma^{2}$. Consider the product of form

$$
\begin{equation*}
\prod_{j=1}^{2^{l}} \varphi\left(g_{l j} g_{l \sigma(j)}\right), \tag{10}
\end{equation*}
$$

where σ and $g_{l i} g_{l \sigma(i)}$ are from $\left(g_{l 1} g_{l \sigma(2)}, \ldots, g_{l 2^{l-1}} g_{l \sigma\left(2^{l-1}\right)}\right) \sigma^{2}$.
Note that each element $g_{l j}$ occurs twice in (10) regardless of the permutation σ, therefore considering commutativity of homomorphic images $\varphi\left(g_{l j}\right), 1 \leq j \leq 2^{l}$ we conclude that $\prod_{j=1}^{2^{l}} \varphi\left(g_{l j} g_{l \sigma(j)}\right)=\prod_{j=1}^{2^{l}} \varphi\left(g_{l j}^{2}\right)=e$, because of $g_{l j}^{2}=e$. We rewrite $\prod_{j=1}^{2^{l}} \varphi\left(g_{l j}^{2}\right)=e$ as characteristic condition: $\prod_{j=1}^{2^{l-1}} \varphi\left(g_{l j}\right)=\prod_{j=2^{l-1}+1}^{2^{l}} \varphi\left(g_{l j}\right)=e$.

According to Property 1, any commutator from $G^{\prime}{ }_{k}$ can be presented as a product of some squares $s^{2}, s \in G_{k}, s=\left(\left(s_{l 1}, \ldots, s_{l 2^{l}}\right) \sigma\right)$.

A product of elements of $G_{k}(k-1)$ satisfies the equation $\prod_{j=1}^{2^{l}} \varphi\left(g_{l j}\right)=e$, because any permutation of elements from X^{k}, which belongs to G_{k} is even. Consider the element $s=\left(s_{k-1,1}, \ldots, s_{k-1,2^{k-1}}\right) \sigma$, where $\left(s_{k-1,1}, \ldots, s_{k-1,2^{k-1}}\right) \in$
$G_{k}(k-1), \sigma \in G_{k-1}$. If $g_{01}=(1,2)$, where g_{01} is root permutation of σ, then $s^{2}=\left(s_{k-1,1} s_{k-1 \sigma(1)}, \ldots, s_{k-1,\left(2^{k-1}\right)} s_{k-1, \sigma\left(2^{k-1}\right)}\right)$, where $\sigma(j)>2^{k-1}$ for $j \leq$ 2^{k-1}, and if $j<2^{k-1}$ then $\sigma(j) \geq 2^{k-1}$. Because of $\prod_{j=1}^{2^{k-1}} \varphi\left(g_{k-1, j}\right)=e$ in G_{k} and the property $\sigma(j) \leq 2^{k-1}$ for $j>2^{k-1}$, then the product $\prod_{j=1}^{2^{k-2}} \varphi\left(g_{k-1, j} g_{k-1, \sigma(j)}\right)$ of images of v.p. from $\left(g_{k-1,1} g_{k-1, \sigma(1)}, \ldots, g_{k-1,\left(2^{k-1}\right)} g_{k-1, \sigma\left(2^{k-1}\right)}\right)$ is equal to $\prod_{j=1}^{2^{k-1}} \varphi\left(g_{k-1, j}\right)=e$. Indeed in $\prod_{j=1}^{2^{k-1}} \varphi\left(g_{k-1, j}\right)$ and as in $\prod_{j=1}^{2^{k-1}} \varphi\left(g_{k-1, j} g_{k-1, \sigma(j)}\right)$ are the same v.p. from X^{k-1} regardless of such σ as described above.

The same is true for right half of X^{k-1}. Therefore the equality (9) holds.
Note that such product $\prod_{j=1}^{2^{k-1}} \varphi\left(g_{k-1, j}\right)$ is homomorphic image of $\left(g_{l, 1} g_{l, \sigma(1)}, \ldots\right.$, $\left.g_{l,\left(2^{l}\right)} g_{l \sigma\left(2^{l}\right)}\right)$, where $l=k-1$, as an element of $G_{k}^{\prime}(l)$ after mapping (7).

If $g_{01}=e$, where g_{01} is root permutation of σ then σ can be decomposed as $\sigma=\left(\sigma_{11}, \sigma_{12}\right)$, where σ_{11}, σ_{12} are root permutations in v_{11} and v_{12}. As a result s^{2} has a form $\left(\left(s_{l 1} s_{l \sigma(1)}, \ldots, s_{l \sigma\left(2^{l-1}\right)}\right) \sigma_{1}^{2},\left(s_{l 2^{l-1}+1} s_{l \sigma\left(2^{l-1}+1\right)}, \ldots, s_{l\left(2^{l}\right)} s_{l \sigma\left(2^{l}\right)}\right) \sigma_{2}^{2}\right)$, where $l=k-1$. As a result of action of σ_{11} all states of l-th level with number $1 \leq j \leq 2^{k-2}$ permutes in coordinate from 1 to 2^{k-2} the other are fixed. The action of σ_{11} is analogous.

It corresponds to the next form of element from $G_{k}^{\prime}(l)$:

$$
\left(g_{l 1} g_{l \sigma_{1}(1)}, \ldots, g_{l \sigma_{1}\left(2^{l-1}\right)}\right), \quad\left(g_{l 2^{l-1}+1} g_{l \sigma_{2}\left(2^{l-1}+1\right)}, \ldots, g_{l\left(2^{l}\right)} g_{l \sigma_{2}\left(2^{l}\right)}\right) .
$$

Therefore the product of form

$$
\prod_{j=1}^{2^{k-2}} \varphi\left(g_{k-1, j} g_{l \sigma(j)}\right)=\prod_{j=2^{k-2}+1}^{2^{k-1}} \varphi\left(g_{k-1, j}^{2}\right)=e,
$$

because of $g_{k-1, j}^{2}=e$. Thus, characteristic equation (9) of $k-1$ level holds.
The conditions (8), (9) for every $s^{2}, s \in G_{k}$ hold so it holds for their product that is equivalent to conditions hold for every commutator.

Definition 3. We define a subdirect product of group G_{k-1} with itself by equipping it with condition (8) and (9) of index parity on all of $k-1$ levels.

Corollary 9. The subdirect product $G_{k-1} \boxtimes G_{k-1}$ is defined by $k-2$ outer relations on level subgroups. The order of $G_{k-1} \boxtimes G_{k-1}$ is $2^{2^{k}-k-2}$.

Proof. We specify a subdirect product for the group $G_{k-1} \boxtimes G_{k-1}$ by using ($k-2$) conditions for the subgroup levels. Each G_{k-1} has even index
on $k-2$-th level, it implies that its relation for $l=k-1$ holds automatically. This occurs because of the conditions of parity for the index of the last level is characteristic of each of the multipliers G_{k-1}. Therefore It is not an essential condition for determining a subdirect product.

Thus, to specify a subdirect product in the group $G_{k-1} \boxtimes G_{k-1}$, there are obvious only $k-2$ outer conditions on subgroups of levels. Any of such conditions reduces the order of $G_{k-1} \times G_{k-1}$ in 2 times. Hence, taking into account that the order of G_{k-1} is $2^{2^{k-1}-2}$, the order of $G_{k-1} \boxtimes G_{k-1}$ as a subgroup of $G_{k-1} \times G_{k-1}$ the following: $\left|G_{k-1} \boxtimes G_{k-1}\right|=\left(2^{2^{k-1}-2}\right)^{2}: 2^{k-2}=$ $2^{2^{k}-4}: 2^{k-2}=2^{2^{k}-k-2}$. Thus, we use $k-2$ additional conditions on level subgroup to define the subdirect product $G_{k-1} \boxtimes G_{k-1}$, which contain $G^{\prime}{ }_{k}$ as a proper subgroup of G_{k}. Because according to the conditions, which are realized in the commutator of $G^{\prime}{ }_{k},(9)$ and (8) indexes of levels are even.

Corollary 10. A commutator $G^{\prime}{ }_{k}$ is embedded as a normal subgroup in $G_{k-1} \boxtimes$ G_{k-1}.

Proof. A proof of injective embedding $G^{\prime}{ }_{k}$ into $G_{k-1} \boxtimes G_{k-1}$ immediately follows from last item of proof of Corollary 9 . The minimality of $G^{\prime}{ }_{k}$ as a normal subgroup of G_{k} and injective embedding $G^{\prime}{ }_{k}$ into $G_{k-1} \boxtimes G_{k-1}$ immediately entails that $G^{\prime}{ }_{k} \triangleleft G_{k-1} \boxtimes G_{k-1}$.

Theorem 5. A commutator of G_{k} has form $G^{\prime}{ }_{k}=G_{k-1} \boxtimes G_{k-1}$, where the subdirect product is defined by relations (8) and (9). The order of $G^{\prime}{ }_{k}$ is $2^{2^{k}-k-2}$.

Proof. Since according to Statement $2\left(g_{1}, g_{2}\right)$ as elements of $G^{\prime}{ }_{k}$ also satisfy relations (8) and (9), which define the subdirect product $G_{k-1} \boxtimes G_{k-1}$. Also condition $g_{1} g_{2} \in B^{\prime}{ }_{k-1}$ gives parity of permutation which defined by $\left(g_{1}, g_{2}\right)$ because $B^{\prime}{ }_{k-1}$ contains only element with even index of level [16]. The group $G^{\prime}{ }_{k}$ has 2 disjoint domains of transitivity so $G^{\prime}{ }_{k}$ has the structure of a subdirect product of G_{k-1} which acts on this domains transitively. Thus, all elements of $G^{\prime}{ }_{k}$ satisfy the conditions (8), (9) which define subdirect product $G_{k-1} \boxtimes G_{k-1}$. Hence $G^{\prime}{ }_{k}<G_{k-1} \boxtimes G_{k-1}$ but $G^{\prime}{ }_{k}$ can be equipped by some other relations, therefore, the presence of isomorphism has not yet been proved. For proving revers inclusion we have to show that every element from $G_{k-1} \boxtimes G_{k-1}$ can be expressed as word $a^{-1} b^{-1} a b$, where $a, b \in G_{k}$. Therefore, it suffices to show the reverse inclusion. For this goal we use that $G^{\prime}{ }_{k}<G_{k-1} \boxtimes G_{k-1}$. As it was shown in [16] that the order of G_{k} is $2^{2^{k}-2}$.

As it was shown above, $G^{\prime}{ }_{k}$ has k new conditions relatively to G_{k}. Each condition is stated on some level-subgroup. Each of these conditions reduces an order of the corresponding level subgroup in 2 times, so the order of $G^{\prime}{ }_{k}$ is in 2^{k} times lesser. On every $X^{l}, l \leq k-1$, there is even number of active v.p. by this reason, there is trivial permutation on X^{0}.

According to the Corollary 9, in the subdirect product $G_{k-1} \boxtimes G_{k-1}$ there are exactly $k-2$ conditions relatively to $G_{k-1} \times G_{k-1}$, which are for the subgroups of levels. It has been shown that the relations (8), (9) are fulfilled in $G^{\prime}{ }_{k}$.

Let $\alpha_{l m}, 0 \leq l \leq k-1,0 \leq m \leq 2^{l-1}$ be an automorphism from G_{k} having only one active v.p. in $v_{l m}$, and let $\alpha_{l m}$ have trivial permutations in rest of the vertices. Recall that partial case of notation of form $\alpha_{l m}$ is the generator $\alpha_{l}:=\alpha_{l 1}$ of G_{k} which was defined by us in [16] and denoted by us as α_{l}. Note that the order of $\alpha_{l i}, 0 \leq l \leq k-1$ is 2 . Thus, $\alpha_{j i}=$ $\alpha_{j i}^{-1}$. We choose a generating set consisting of the following $2 k-3$ elements: $\left(\alpha_{1,1 ; 2}\right), \alpha_{2,1}, \ldots, \alpha_{k-1,1}, \alpha_{2,3}, \ldots, \alpha_{k-1,2^{k-2}+1}$, where ($\alpha_{1,1 ; 2}$) is an automorphism having exactly 2 active v.p. in v_{11} and v_{12}. Product of the form $\left(\alpha_{j 1} \alpha_{l 1} \alpha_{j 1}\right) \alpha_{l 1}$ are denoted by $P_{l m}$. In more details, $P_{l m}=\alpha_{j i} \alpha_{l m} \alpha_{j i} \alpha_{l m}$, where $\alpha_{j i} \in G_{k}(j)$. Using a conjugation by generator $\alpha_{j}, 0 \leq j<l$ we can express any v.p. on l level, because $\left(\alpha_{j} \alpha_{l} \alpha_{j}\right)=\alpha_{l 2^{l-j-1}+1}$. Consider the product $P_{l j}=\left(\alpha_{j} \alpha_{l} \alpha_{j}\right) \alpha_{l}$.

1. We need to show that every element of $G_{k-1} \boxtimes G_{k-1}$ can be constructed as $g^{-1} h^{-1} g h, g, h \in G_{k}$. This proves the absence of other relations in $G^{\prime}{ }_{k}$ except those that in the subdirect product $G_{k-1} \boxtimes G_{k-1}$. Thereby we prove the embeddedness of $G^{\prime}{ }_{k}$ in $G_{k-1} \boxtimes G_{k-1}$. We have to construct an element of form $P_{k-1} P_{k-2} \cdot \ldots \cdot P_{1} P_{0}$ as a product of elements of form $[g, h]$, where $P_{l}=\prod_{i=1}^{2^{l}} P_{l m}$ satisfying relations (8), (9).
2. We have to construct an arbitrary tuple of 2 active v.p. on X^{l} as a product of several P_{l}. We use the generator α_{l} and conjugating it by $\alpha_{j}, j<l$. It corresponds to the tuple of v.p. of the form $\left(g_{l 1}, e, \ldots, e, g_{l j}, e, \ldots, e\right)$, where $g_{l 1}, g_{l j}$ are non-trivial. Note that this tuple $\left(g_{l 1}, e, \ldots, e, g_{l j}, e, \ldots, e\right)$ is an element of direct product if we consider as an element of S_{2} in vertices of X^{l}. To obtain a tuple of v.p. of form $\left(e, \ldots, e, g_{l m}, e, \ldots, e, g_{l j}, e, \ldots, e\right)$ we multiply $P_{l j}$ and $P_{l m}$.
3. To obtain a tuple of v.p. with $2 m$ active v.p. we construct $\prod_{i=1}^{m} P_{l j_{i}}, m<$ 2^{l} for varying $i, j<2^{k-2}$.

On the $(k-1)$-th level we choose the generator τ which was defined in [16] as $\tau=\tau_{k-1,1} \tau_{k-1,2^{k-1}}$. Recall that it was shown in [16] how to express any $\tau_{i j}$ using $\tau, \tau_{i, 2^{k-2}}, \tau_{j, 2^{k-2}}$, where $i, j<2^{k-2}$, as a product of commutators $\tau_{i j}=\tau_{i, 2^{k-2}} \tau_{j, 2^{k-2}}=\left(\alpha_{i}^{-1} \tau_{1,2^{k-2}}^{-1} \alpha_{i} \tau_{j, 2^{k-2}}\right)$. Here $\tau_{i, 2^{k-2}}$ was expressed as the commutator $\tau_{i, 2^{k-2}}=\alpha_{i}^{-1} \tau_{1,2^{k-2}}^{-1} \alpha_{i} \tau_{1,2^{k-2}}$. Thus, we express all tuples of elements satisfying to relations (8) and (9) by using only commutators of G_{k}.

Thus, we get all tuples of each level subgroup elements satisfying the relations (8) and (9). It means we express every element of each level subgroup by a commutators. In particular to obtain a tuple of v.p. with $2 m$ active v.p. on X^{k-2} of $v_{11} X^{[k-1]}$, we will construct the product for $\tau_{i j}$ for varying $i, j<2^{k-2}$.

Thus, all vertex labelings of automorphisms, which appear in the representation of $G_{k-1} \boxtimes G_{k-1}$ by portraits as the subgroup of $\operatorname{Aut} X^{[k]}$, are also in the representation of $G^{\prime}{ }_{k}$.

Since there are faithful representations of $G_{k-1} \boxtimes G_{k-1}$ and $G^{\prime}{ }_{k}$ by portraits of automorphisms from Aut $X^{[k]}$, which coincide with each other, then subgroup $G^{\prime}{ }_{k}$ of $G_{k-1} \boxtimes G_{k-1} \simeq G^{\prime}{ }_{k}$ is equal to whole $G_{k-1} \boxtimes G_{k-1}$ (i.e. $G_{k-1} \boxtimes G_{k-1}=$ $G^{\prime}{ }_{k}$).

The archived results are confirmed by algebraic system GAP calculations. For instance, $\left|S y l_{2} A_{8}\right|=2^{6}=2^{2^{3}-2}$ and $\left|\left(S y l A_{2^{3}}\right)^{\prime}\right|=2^{2^{3}-3-2}=8$. The order of G_{2} is 4 , the number of additional relations in subdirect product is $k-2=3-2=1$. Then we have the same result $(4 \cdot 4): 2^{1}=8$, which confirms Theorem 5.

Example 1. Set $k=4$ then $\left|\left(S y l A_{16}\right)^{\prime}\right|=\left|\left(G_{4}\right)^{\prime}\right|=1024,\left|G_{3}\right|=64$, since $k-2=2$, so according to our theorem above order of $S y l_{2} A_{16} \boxtimes S y l_{2} A_{16}$ is defined by $2^{k-2}=2^{2}$ relations, and by this reason is equal to $(64 \cdot 64): 4=1024$. Thus, orders are coincides.

Example 2. The true order of $\left(S y l_{2} A_{32}\right)^{\prime}$ is $33554432=2^{25}, k=5$. A number of additional relations which define the subdirect product is $k-2=3$. Thus, according to Theorem 5, $\left|\left(S y l_{2} A_{16} \boxtimes S y l_{2} A_{16}\right)^{\prime}\right|=2^{14} 2^{14}: 2^{5-2}=2^{28}: 2^{5-2}=$ 2^{25}.

According to calculations in GAP we have: $S y l_{2} A_{7} \simeq S y l_{2} A_{6} \simeq D_{4}$. Therefore its derived subgroup $\left(S y l_{2} A_{7}\right)^{\prime} \simeq\left(S y l_{2} A_{6}\right)^{\prime} \simeq\left(D_{4}\right)^{\prime}=C_{2}$.

The following structural law for Syllows 2-subgroups is typical. The structure of $S y l_{2} A_{n}, S y l_{2} A_{k}$ is the same. If for all n and k that have the same multiple of 2 as multiplier in decomposition on $n!$ and $k!$ Thus, $S y l_{2} A_{2 k} \simeq$ $S y l_{2} A_{2 k+1}$.

Example 3. Syl $_{2} A_{7} \simeq$ Syl $_{2} A_{6} \simeq D_{4}$, Syl $_{2} A_{10} \simeq$ Syl $_{2} A_{11} \simeq$ Syl $_{2} S_{8} \simeq$ $\left(D_{4} \times D_{4}\right) \rtimes C_{2} . S y l_{2} A_{12} \simeq S y l_{2} S_{8} \boxtimes S y l_{2} S_{4}$, by the same reasons that from the proof of Corollary 9 its commutator subgroup is decomposed as $\left(S y l_{2} A_{12}\right)^{\prime} \simeq$ $\left(S y l_{2} S_{8}\right)^{\prime} \times\left(S y l_{2} S_{4}\right)^{\prime}$.

Lemma 7. In $G_{k}^{\prime \prime}$ the following equalities are true:

$$
\begin{gather*}
\prod_{j=1}^{2^{l-2}} \varphi\left(g_{l j}\right)=\prod_{j=2^{l-2}+1}^{2^{l-1}} \varphi\left(g_{l j}\right)=\prod_{j=2^{l-1}+1}^{2^{l-1}+2^{l-2}} \varphi\left(g_{l j}\right)= \tag{11}\\
=\prod_{j=2^{l-1}+2^{l-2}+1}^{2^{l}} \varphi\left(g_{l j}\right), \quad 2<l<k
\end{gather*}
$$

In case $l=k-1$, the following conditions hold:

$$
\begin{equation*}
\prod_{j=1}^{2^{l-2}} \varphi\left(g_{l j}\right)=\prod_{j=2^{i-1}+1}^{2^{l-1}} \varphi\left(g_{l j}\right)=e, \prod_{j=2^{l-1}}^{2^{l-1}+2^{l-2}} \varphi\left(g_{l j}\right)=\prod_{j=2^{l-1}+2^{l-2}}^{2^{l}} \varphi\left(g_{l j}\right)=e \tag{12}
\end{equation*}
$$

In other terms, the subgroup $G_{k}^{\prime \prime}$ has an even index of any level of $v_{11} X^{[k-2]}$ and of $v_{12} X^{[k-2]}$.

Proof. As a result of derivation of G_{k}^{\prime}, elements of $G_{k}^{\prime \prime}(1)$ are trivial. Due the fact that $G^{\prime}{ }_{k} \simeq G_{k-1} \boxtimes G_{k-1}$, we can derivate $G^{\prime}{ }_{k}$ by commponents. The commutator of G_{k-1} is already investigated in Theorem 5. As $G_{k-1}^{2}=G^{\prime}{ }_{k-1}$ by Corollary 7 , it is more convenient to present a characteristic equalities in the second commutator $G^{\prime \prime}{ }_{k} \simeq G^{\prime}{ }_{k-1} \boxtimes G^{\prime}{ }_{k-1}$ as equations in $G_{k-1}^{2} \boxtimes G_{k-1}^{2}$. As shown above, for $2 \leq l<k-1$, in G_{k-1}^{2} the following equalities are true:

$$
\begin{gather*}
\prod_{j=1}^{2^{l-1}} \varphi\left(g_{l j} g_{l \sigma(j)}\right)=\prod_{j=1}^{2^{l-1}} \varphi\left(g_{l j}\right) \prod_{j=1}^{2^{l-1}} \varphi\left(g_{l \sigma(j)}\right)= \tag{13}\\
=\prod_{j=1}^{2^{l-1}} \varphi\left(g_{l j}\right) \prod_{j=1}^{2^{l-1}} \varphi\left(g_{l i}\right)=\prod_{j=1}^{2^{l-1}} \varphi\left(g_{l j}^{2}\right)=e \\
\prod_{j=1}^{2^{l-2}} \varphi\left(g_{l j}\right)=\prod_{j=2^{l-2}+1}^{2^{l-1}} \varphi\left(g_{l j}\right)=\prod_{j=2^{l-1}+1}^{2^{l-1}+2^{l-2}} \varphi\left(g_{l j}\right)=\prod_{j=2^{l-1}+2^{l-2}+1}^{2^{l}} \varphi\left(g_{l j}\right) . \tag{14}
\end{gather*}
$$

The equality (14) is true because of it is the initial group $G^{\prime}{ }_{k} \simeq G_{k-1} \boxtimes G_{k-1}$. The equalities

$$
\prod_{j=2^{l-1}+1}^{2^{l-1}+2^{l-2}} \varphi\left(g_{l j}\right)=\prod_{j=2^{l-1}+2^{l-2}+1}^{2^{l}} \varphi\left(g_{l j}\right)
$$

are right for elements of second group $G^{\prime}{ }_{k-1}$, since elements of the original group are endowed with this conditions.

Upon a squaring of $G^{\prime}{ }_{k}$ any element of $G^{\prime}{ }_{k}(l)$, satisfies the equality (14) in addition to satisfying the previous conditions (11) because of $\left(G_{k-1}(l)\right)^{2}=$ $G^{\prime}{ }_{k-1}(l)$. The similar conditions appears in $\left(G^{\prime}{ }_{k-1}(k-2)\right)^{2}$ after squaring of $G^{\prime}{ }_{k}$. Thus, taking into account the characteristic equations of $G^{\prime}{ }_{k-1}(l)$, the subgroup $\left(G^{\prime}{ }_{k-1}(k-2)\right)^{2}$ satisfies the equality:

$$
\begin{equation*}
\prod_{j=1}^{2^{k-3}} \varphi\left(g_{l j}\right)=\prod_{j=2^{k-3}+1}^{2^{k-2}} \varphi\left(g_{l j}\right)=e, \prod_{j=2^{k-2}+1}^{2^{k-2}+2^{k-3}} \varphi\left(g_{l j}\right)=\prod_{j=2^{k-1}+2^{k-2}+1}^{2^{k-1}} \varphi\left(g_{l j}\right)=e . \tag{15}
\end{equation*}
$$

Taking into account the structure $G^{\prime}{ }_{k} \simeq G_{k-1} \boxtimes G_{k-1}$ we obtain after derivation $G^{\prime \prime}{ }_{k} \simeq\left(G_{k-2} \boxtimes G_{k-2}\right) \boxtimes\left(G_{k-2} \boxtimes G_{k-2}\right)$. With respect to conditions 8,9 in the subdirect product we have that the order of $G^{\prime \prime}{ }_{k}$ is $2^{2^{k}-k-2}: 2^{2 k-3}=$ $2^{2^{k}-3 k+1}$ because on every level $2 \leq l<k$ order of level subgroup $G^{\prime \prime}{ }_{k}(l)$ is in 4 times lesser then order of $G^{\prime}{ }_{k}(l)$. On the 1 -st level one new condition arises that reduce order of $G^{\prime}{ }_{k}(1)$ in 2 times. Totally we have $2(k-2)+1=2 k-3$ new conditions in comparing with $G^{\prime}{ }_{k}$.

Example 4. Size of $\left(G_{4}^{\prime \prime}\right)$ is 32, a size of direct product $\left(G_{3}^{\prime}\right)^{2}$ is 64 , but, due to relation on second level of $G_{k}^{\prime \prime}$, the direct product $\left(G_{3}^{\prime}\right)^{2}$ transforms into the subdirect product $G_{3}^{\prime} \boxtimes G_{3}^{\prime}$ that has 2 times less feasible combination on X^{2}. The number of additional relations in the subdirect product is $k-3=4-3=1$. Thus the order of product is reduced in 2^{1} times.

Example 5. The commutator subgroup of $\operatorname{Syl}_{2}^{\prime}\left(A_{8}\right)$ consists of elements:

$$
\left.\left.\begin{array}{rl}
\{e,(13)(24)(57)(68),(12)(34),(14)(23)(57)(68),(56)(78),
\end{array}\right\}(13)(24)(58)(67),(12)(34)(56)(78),(14)(23)(58)(67)\right\} .
$$

The commutator $\operatorname{Syl}_{2}^{\prime}\left(A_{8}\right) \simeq C_{2}^{3}$ that is an elementary abelian 2-group of order 8. This fact confirms our formula $d\left(G_{k}\right)=2 k-3$, because $k=3$ and $d\left(G_{k}\right)=$ $2 k-3=3$. A minimal generating set of $\operatorname{Syl}_{2}^{\prime}\left(A_{8}\right)$ consists of 3 generators: $(1,3)(2,4)(5,7)(6,8),(1,2)(3,4),(1,3)(2,4)(5,8)(6,7)$.

Example 6. The minimal generating set of Syl ${ }_{2}^{\prime}\left(A_{16}\right)$ consists of 5 (that is $2 \cdot 4-3)$ generators:

$$
\begin{gathered}
(1,4,2,3)(5,6)(9,12)(10,11),(1,4)(2,3)(5,8)(6,7),(1,2)(5,6), \\
(1,7,3,5)(2,8,4,6)(9,14,12,16)(10,13,11,15), \\
(1,7)(2,8)(3,6)(4,5)(9,16,10,15)(11,14,12,13) .
\end{gathered}
$$

Example 7. Minimal generating set of Syl ${ }_{2}^{\prime}\left(A_{32}\right)$ consists of 7 (that is 2.5-3) generators:

$$
\begin{gathered}
(23,24)(31,32),(1,7)(2,8)(3,5,4,6)(11,12)(25,32)(26,31)(27,29)(28,30), \\
(3,4)(5,8)(6,7)(13,14)(23,24)(27,28)(29,32)(30,31), \\
(7,8)(15,16)(23,24)(31,32) \\
(1,9,7,15)(2,10,8,16)(3,11,5,13)(4,12,6,14)(17,29,22,27,18,30,21,28) \\
(19,32,23,26,20,31,24,25),(1,5,2,6)(3,7,4,8)(9,15)(10,16)(11,13) \times \\
(12,14)(19,20)(21,24,22,23)(29,31)(30,32),(3,4)(5,8)(6,7)(9,11,10,12) \times \\
(13,14)(15,16)(17,23,20,22,18,24,19,21)(25,29,27,32,26,30,28,31) .
\end{gathered}
$$

This confirms our formula of minimal generating set size $2 \cdot k-3$.

4. Conclusion

The size of minimal generating set for commutator of Sylow 2-subgroup of alternating group $A_{2^{k}}$ was proven is equal to $2 k-3$.

A new approach to presentation of Sylow 2-subgroups of alternating group $A_{2^{k}}$ was applied. As a result the short proof of a fact that commutator width of Sylow 2-subgroups of alternating group $A_{2^{k}}$, permutation group $S_{2^{k}}$ and Sylow p-subgroups of $S y l_{2} A_{p^{k}}\left(S y l_{2} S_{p^{k}}\right)$ are equal to 1 was obtained. Commutator width of permutational wreath product $B \imath C_{n}$ were investigated.

Скуратовський P．В．
 ГРУПИ I ÏХ СТРУКТУРА

Резюме

Знайдено мінімальну систему твірних для комутанта силовських 2 －підгруп знакозмінної групи．Досліджено структуру комутанта силовських 2 －підгруп знакозмінної групи $A_{2^{k}}$ ．

Показано，що $\left(S y l_{2} A_{2^{k}}\right)^{2}=S y l_{2}^{\prime} A_{2^{k}}, k>2$ ．
Доведено，що довжина по комутатора довільного елемента ітерірованого вінцевого добутку циклічних груп $C_{p_{i}}, p_{i} \in \mathbb{N}$ дорівнює 1 ．Знайдена ширину по коммутанту прямої границі вінцевого добутку циклічних груп．У даній статті знайдені верхні оцінки ширини по комутанту $(c w(G))$［1］вінцевого добутку груп．

Розглянуто рекурсивне представлення силовских 2 －Підгрупп $S y l_{2}\left(A_{2^{k}}\right)$ з $A_{2 k}$ ．В результаті отримано коротке доведення того，що ширина по комутанту силовських 2 － підгруп груп $A_{2^{k}}$ i $S_{2^{k}}$ рівна 1.

Досліджено комутаторна ширина перестановочного сплетення B 亿 C_{n} ．Знайдена верхня оцінка ширини по коммутанта сплетення груп діючих перестановками $-B$ 亿 C_{n} для довільної групи B ．
Ключові слова：вінцевий добуток，мінімальна система твірних комутанта силов－ ських 2－підгруп знакозмінної групи，ширина по комутанту силовських р－підгруп，ко－ мутант силовських 2－підгруп знакозмінної групи．

Скуратовский Р．В．
МИНИМАЛЬНАЯ СИСТЕМА ОБРАЗУюЩИХ КОММУТАНТА СИЛОВСКИХ 2 －ПОДГРУПП ЗНА－ КОПЕРЕМЕННОЙ ГРУППЫ И ИХ СТРУКТУРА

Резюме

Найдено минимальная система образующих для коммутанта силовских 2 －подгрупп зна－ копеременной группы．Исследована структура коммутаторной подгруппы силовских 2 － подгрупп знакопеременной группы $A_{2^{k}}$ ．

Показано，что $\left(S y l_{2} A_{2^{k}}\right)^{2}=S y l_{2}^{\prime} A_{2^{k}}, k>2$ ．
Доказано，что длина по коммутатора произвольного элемента итерированого спле－ тения циклических групп $C_{p_{i}}, p_{i} \in \mathbb{N}$ равна 1 ．Найдена ширина по коммутанту прямого предела сплетения циклических групп．В данной статье представлены верхние оценки ширины коммутатора $(c w(G))$［1］сплетения групп．

Рассмотрено рекурсивное представление силовских 2 －подгрупп $S y l_{2}\left(A_{2^{k}}\right)$ из $A_{2^{k}}$ ．В результате получено краткое доказательство того，что ширина коммутатора силовских 2 －подгрупп группы $A_{2^{k}}$ ，группы перестановок $S_{2^{k}}$ ．

Исследована коммутаторная ширина перестановочного сплетения B 乞 C_{n} ．Найдена верхняя оценка ширины по коммутанту сплетения групп действующих перестановками $-B$ 乙 C_{n} для произвольной группы B ．
Ключевые слова：сплетение групп，минимальная система образующих коммутанта силовских 2－подгрупп знакопеременной группы，ширина по коммутанту силовских р－ подгрупп，коммутант силовских 2－подгрупп знакопеременной группы．

References

1．Alexey Muranov，Finitely generated infinite simple groups of infinite commutator width． arXiv：math／0608688v4［math．GR］ 12 Sep 2009.
2．J．D．P．Meldrum，Wreath Products of Groups and Semigroups．Pitman Monographs and Surveys in Pure and Applied Mathematic．1st Edition．Jun（1995）． 425 p．
3. Nikolay Nikolov, On the commutator width of perfect groups. Bull. London Math. Soc. 36 (2004) p. 30-36.
4. W. B. Fite, On metabelian groups, Trans. Amer. Math. Soc, 3 (1902), pp. 331-353.
5. Roger C. Lyndon Paul E. Schupp, Combinatorial group theory. Springer-Verlag Berlin Heidelberg New York 1977. 447 p.
6. Nekrashevych V. Self-similar groups. International University Bremen. American Mathematical Society. Monographs. Volume 117. 230 p.
7. I.V. Bondarenko, I.O. Samoilovych, On finite generation of self-similar groups of finite type. Int. J. Algebra Comput. February (2013), Volume 23, Issue 01, pp. 69-77
8. R.I. Grigorchuk, Solved and unsolved problems around one group. Infinite Groups: Geometric, Combinatorial and Dynamical Aspects. Basel, (2005). Progress Math., vol 248. pp. 117-218.
9. Lavrenyuk Y. On the finite state automorphism group of a rooted tree Algebra and Discrete Mathematics Number 1. (2002). pp. 79-87
10. L. Kaloujnine, "La structure des p-groupes de Sylow des groupes symetriques finis", Annales Scientifiques de l'Ecole Normale Superieure. Serie 65, (1948) pp. 239-276.
11. B. Pawlik, The action of Sylow 2-subgroups of symmetric groups on the set of bases and the problem of isomorphism of their Cayley graphs. Algebra and Discrete Mathematics. (2016), Vol. 21, N. 2, pp. 264-281.
12. R. Skuratovskii, "Corepresentation of a Sylow p-subgroup of a group Sn". Cybernetics and systems analysis, (2009), N. 1, pp. 27-41.
13. R. Skuratovskii. Generators and relations for sylows p-subgroup of group S_{n}. Naukovi Visti KPI. 4 (2013), pp. 94-105. (in Ukrainian)
14. R.V. Skuratovskii, Y.A. Drozd, Generators and and relations for wreath products of groups. Ukr Math J. (2008), vol. 60. Issue 7, pp. 1168-1171.
15. R. V. Skuratovskii, Minimal generating systems and properties of $S y l_{2} A_{2^{k}}$ and $S y l_{2} A_{n}$. X International Algebraic Conference in Odessa dedicated to the 70th anniversary of Yu. A. Drozd. (2015), pp. 104.
16. Skuratovskii R. V. Involutive irreducible generating sets and structure of sylow 2subgroups of alternating groups. ROMAI J., 13, Issue 1, (2017), pp. 117-139.
17. R. V. Skuratovskii, Structure and minimal generating sets of Sylow 2-subgroups of alternating groups. Source: https://arxiv.org/abs/1702.05784v2
18. R. Skuratovskii. Commutators subgroups of sylow subgroups of alternating and symmetric groups their minimal generating sets. The XII International Algebraic Conference in Ukraine (2019) Vinnytsia, p. 75.
19. U. Dmitruk, V. Suschansky, Structure of 2-sylow subgroup of alternating group and normalizers of symmetric and alternating group. UMJ. (1981), N. 3, pp. 304-312.
20. H. Heineken, Normal embeddings of p-groups into p-groups, Proc. Edinburgh Math. Soc. 35 (1992), pp. 309-314.
21. Sushchansky V.I. ℓ-Wreath products and isometries of generalized Baire metrics. //Translated from Ukrainskii Matematicheskii Zhurnal,.Vol. 43, No. 7 and 8, Issue -1991.- pp. 1031-1038.
22. David Ward. Topics in Finite Groups: Homology Groups, Pi-product Graphs, Wreath Products and Cuspidal Characters. Manchester Institute for Mathematical Sciences School of Mathematics. July (2015) P. 253.
23. Robert Guralnick. Commutators and wreath products // Contemporary Mathematics. Volume 524, 2010.

