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AN EXACT SOLUTION OF THE DYNAMICAL PROBLEM
FOR THE INFINITE ELASTIC LAYER WITH A
CYLINDRICAL CAVITY

The wave field of an infinite elastic layer weakened by a cylindrical cavity is constructed in
this paper. The ideal contact conditions are given on the upper and bottom faces of the layer.
The normal dynamic tensile load is applied to a cylindrical cavity’s surface at the initial mo-
ment of time. The Laplace and finite sin— and cos— Fourier integral transforms are applied
successively directly to axisymmetric equations of motion and to the boundary conditions,
on the contrary to the traditional approaches, when integral transforms are applied to solu-
tions’ representation through harmonic and biharmonic functions. This operation leads to
a one-dimensional vector homogeneous boundary value problem with respect to unknown
transformations of displacements. The problem is solved using matrix differential calculus.
The field of initial displacements is derived after application of inverse integral transforms.
The case of the steady-state oscillations was investigated. The normal stress on the faces of
the elastic layer are constructed and investigated depending on the mechanical and dynamic
parameters.
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1. INTRODUCTION

The presence of defects in elastic bodies causes a stress concentration and
significantly affects at the stress state of constructions. A typical and suffi-
ciently investigated problem of this class is the axisymmetric elasticity problem
on the stress state of a layer, weakened by a cylindrical defect, when differ-
ent boundary conditions are set on layer’s faces and defect’s surface. Existing
research can be divided into three approaches: 1) a construction of an ana-
lytic solution of the problem in an explicit form [10], [2]; 2) a construction
of an analytical-numerical solution, when the problem is reduced either to an
integral equation or to an infinite system of algebraic equations [3], [4]; 3) a
numerical solving of the problem [5], [6].

For realization of the first approach, it is essential to satisfy the conditions
of ideal contact on a cylindrical surface, when the normal displacements and
tangential stress are equal to zero. The exact solution of the formulated prob-
lem for the case, when the layer is replaced by a half-space and the stresses
are given on the faces, is derived in [5]. An approximate analytical - numerical
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solutions for other boundary conditions on the defect’s surface were obtained
at the papers [6], [8].

Dynamic statement of the mentioned problem was considered at the papers
[9], [10]. The theory of harmonic oscillations and wave propagation in elastic
bodies was widely investigated in the monograph [11]. The papers [12], [13]
are devoted to the propagation of elastic waves in plates weakened by the
cavities or holes. Based on complex function theory, an analytical solution
for the dynamic stress concentration due to an arbitrary cylindrical cavity in
an infinite inhomogeneous medium was investigated in [14]. The existence of
trapped elastic waves above a circular cylindrical cavity in a half-space was
demonstrated in [15].

It should be noted that dynamical problems weakened by the defects have
found wide application in the practical problems [16], [17]. An experimental
method was proposed to explore dynamic failure process of pre-stressed rock
specimen with a circular hole to investigate deep underground rock failure at
the [18]. The paper [19] proposes a set of exact solutions for three-dimensional
dynamic responses of a cylindrical lined tunnel in saturated soil due to internal
blast loading are derived by using Fourier transform and Laplace transform.
The surrounding soil was modeled as a saturated medium on the basis of Biot’s
theory and the lining structure modeled as an elastic medium. By utilizing
a reliable and efficient numerical method of inverse Laplace transform and
Fourier transform, the numerical solutions for the dynamic response of the
lining and surrounding soil were obtained.

Nevertheless, the study of an elastic layer hasn’t been completed yet and
opens up many problems. The main difficulty during the solving of the dynamic
problems by the method of integral transforms remains the inversion problem
of the Laplace transform. Therefore, it is often necessary to proceed to a more
narrow class of the problems about steady state oscillations. Research contri-
butions over the past 50 years on the theory and analysis of elastodynamics
are reviewed in the paper [20]. Major topics reviewed are: general theories,
steady-state waves in waveguides, transient waves in layered media, diffraction
and scattering, and one and two-dimensional theories of elastic bodies. A brief
discussion on the direct and inverse problems of elastic waves completes this
review.

The problem of elasticity for an infinite layer with a cylindrical cavity in
a static statement was considered by G. Ya. Popov [10], where an exact solu-
tion was obtained. In this paper this method was extended on the analogical
problem in the dynamic statement.
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Fig. 1. Geometry of the problem

2. MAIN RESULTS

1. Statement of the problem. An elastic layer of thickness b (G is a
shear modulus, p is a Poisson’s ratio, p is density), describing in the cylindrical
coordinate system by the correspondences: a < r < oo, 1< <m,0<2z<h
is weakened by a cylindrical cavity 0 <r <a,0< p <m, 0< z <b (Fig. 1).
The layer’s upper and bottom faces are in the conditions of ideal contact with
a rigid base (the layer is supported by a smooth foundation without a friction)

up(r,0,t) =0, 72 (r,0,t) = 0, uy(r,b,t) =0, 7o (r,b,8) =0 (1)

The cylindrical cavity’s surface r = a is under the influence of the normal
dynamic tensile force P = p(z,t), applied at the initial moment ¢t = 0, the
tangential loading is absent

or(a,z,t) = P(z,t), Trx(a,z,t) =0 (2)

Thus, the problem was reduced to solving axisymmetric equations of mo-
tion with respect to the functions wu,(r, z,t) = u(r, 2,t), us(r, z,t) = w(r, z,t)
in a cylindrical coordinate system [21]

192 2
7’_13 [rgru(r, z,t)] — r2u(r, 2, t) + Z—_&%u(r, z,t) + %_Ha‘?azw(r, z,t) =
—1 £62U(T7Zat)

I G o2
7“_1% [rSw(r, z,t)] + %g—w(r z,t) + 7174_1% [rgzu(r, 2, 1)] 3
_ 82w(r,z,t) ( )
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where /<; = 3 — 4p and subjected to the mixed boundary conditions (1), (2).

Here c1 = :—ﬂ% - squared velocity of longitudinal wave propagation, ¢? = % -
squared velocity of shear wave propagation. So, ¢? = zﬂ .

The following change of the variables was done

p=a'r, E=b"'z, T =ca Mt ulap, b6, ca”'7) = U(p,&,7),
w(ap, b¢,ca'r) = W(p,€,7)

Consequently, the movement equations (3) can be written in the form

(4)

p_lgp [paﬂ (p 5’ )}_ U (p 577-) +1 8§2U(p g, )

2 _ U(pg,T)
+n+1a8p8§ (P f, ) n—i— o712

/0—186;7 [Pap (p,f,T)} Z+%a2{?§2 W(p7€77)+ (5)
= ['085 (pyﬁ,r)} — EWiper)
1<p<oo, 0<E<, a:%,
Boundary conditions (1), taking into account the replacement (4), are trans-
formed into form

ggU(p,O,T) =0, ;U(p, 1,7)=0, W(p,0,7) =0, W(p,1,7) =0 (6)

as the boundary conditions (2) take the form

0 -1
%U(175a7)+ U(l,f, )+O‘7 (1a§a7-) :CLG_1:+1P(£,7) (7)

23

U,¢7)+ =—W(1,¢,7)=0 ()

0
“oe ap
2. Solving a vector one-dimensional boundary problem. In order
to reduce the problem to the one-dimensional one, the finite sin— and cos—
Fourier integral transforms with regard of the variable £ and Laplace integral
transformation with regard of the variable 7 are applied successively to the
differential equations (5) and boundary conditions (6)-(8)

1
Ux(ps7) | _ U(p,&,T)cos A& n=0,1,2,.. -
|:W)\(p, T):| a 0/ |:W(pa§77—) SiHAnf:| ds, n=1,2,.. Ap =mn = A

)= [l
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As a result, equations (5) can be written

P P U )] + 22 A B W (0) = 2 Un(p) — SN ()
— 1P’ Unp(p) =0, 1 < p <00

7 o Wanlo)| = 07 A [PUn ()] — AW ()~ (9)
—p*Wip(p) =0, A\ = Ao

During this operation the boundary conditions (6) are automatically satisfied,
and conditions (7), (8) have the form

3—K k-1
U//\p(l) + 1+ r [Uap(1) + AWp(1)] = aG ! o+ 1P>\p
00 1
W)/\p(l) —AUx(1) =0, Py, = / /P(E,T) cos \p&d€ | e PTdr (10)
0 0

For solving a one-dimensional boundary value problem (9), (10) a second-
order matrix differential operator and the unknown vector of displacements’
transformations are set

—10 r—1 2 2 2 le)
(7 pZ] -2 - (2407 mk*ap
2 2 20 —1of,0] stly

r—17*P ap p P op pap

_ U Ap (,0) )
y(p) <W)\p(p)
Let’s set up the boundary functional corresponding to the boundary conditions

(10)

*

Ul = Ay + ey a= (5 5N = () Y)

In these notations the boundary value problem (9), (10) is written down in a
next form [12]

Loy (p) = f(p), 1 <p<oo, Uly(1)] =7 (11)

0 aG lEZ1lp
f(p) = <0) , Y= < AR >‘P>

In order to get a general decreasing solution when p — oo of the vector
homogeneous equation in (11), the solution of the matrix differential equation

LyY(p)=0,1<p<oo (12)
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should be constructed previously.
With the help of the auxiliary matrix

_(H () 0
H(M)( Yo" e

where Hr(,p(z) is the Hankel first order function, m = 0,1, an important rela-
tionship has been proven [10]

LoH(p,§) = —H(p, &) - M(¢),
EHim(+r) i (13)
M(E) = 2 2 Kt1y2 4 2
nflg)\* 5 + 1471)\* +p
The inverse matrix M(¢) for has the form
_ 1 [y — M
det M\ ——2;6), €24 51 (A2 4p?)
detM = [¢ =iy /A + 77| ¢+ 497 € =iy /22 + 25302

x |6+ iy /22 + 5540

Further, with the help of the equality (13), one can be convinced that the
solution of the matrix equation (12) is

M™(€)

1
27

Y(p) / H(p,£) M~ (€)de,

C

where C is the closed loop covering the origin and two poles of the first mul-

tiplicity & = i\/A2 4+ p?, £ = iy /A2 + Z—j&pQ lying in the upper half-plane.
Applying the methods of contour integration, the matrix is derived

2
(i g 1 (ipoy) .- HYD(ipo) )

Y(p) =52 .
N s Y (poy) —idy - HSY (ipdy)

e (—i cetLs, H D (ipdy) = - H{I)(z'p(sz))
27 . ) A2 .
P\ B (ipsy) i3 - HP(ips)

—1
51 =X+ p? 52:,/A§+—z+1p2 (14)

which was constracted using the residue theorem.

where
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Taking into account the results in [12| and the range of the parameter
1 < p < 00, a decreasing solution of the matrix equation is constructed

2
—i- LK (pd)) —As - Ki(pd1) n
—i - BN Ko(pd1)  —/ A2+ p? - Ko(pdr)

N i 5HSy - Ki(pda) A - K1(pda)

“ i SN, - Ko(pda) % - Ko(pd2)
where K,,(z) is the Macdonald function, m = 0, 1.

The solution of the one-dimensional problem (11) is written in the form

%

[12]

The reality of the solution’s values (15) is guaranteed by the special choice of

constants Cy, C1, which can be found from the boundary conditions (10). It
leads to the linear system of equations

a11Cp + a12C1 = 0
a21Co + agnCy = aG~151

ail =

+1( M(2X2 +p?
:—1{_ ( 3 p)K1(51)+2)\*52K1(52)}

aip = (2)\3 erz)Kl (51) — 2)\2K1 ((52)
Kk+1

1 1
az1 = — {—2)\3—’(2(51) + §5§K2(52)

[2”2* K(61) — 52K1(52)} +
1

5 — 3K 5 — 3K k—1
+mA 0(01) - (2(;~; + 1))‘3 2k 1)p2) KO((SZ)}
a9y = —l)\ (51K2(51) — l)\ (52K2((52) i_,j)\ [ K1(51) —+ K1(52)] —

K K Ase
— SIS Ko (01) — (S350 — L) A Ko(62)

where the known derivatives’ formulas of special functions [23] were used

(.promp) — —aKy(ap), jpmap) — —SalKo(ap) + Kalap)]

The coefficients were found in the form

1 2 1 2
Co= —g3aG H+1p Py a1z, C1 = g5G~ K+1p - Py - an1,

det = ai1a22 — aj2az
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The solution of the one-dimensional value problem (11) in transformation
domain was constructed with their help

Unp(p) = GPA;D(X (=2 (A2 4 p%) K1(p01)K1(82) + (2X2 4 p*) K1 (pd2) K1(61)]

Wyp(p) = GP,\I))\A 126162 K0(p01) K1 (52) — (202 + p*) Ko(pb2) K1 (51)]  (16)

A= (N + )62K1(61>K2<62) 51026, 85 K (82) Ko (61)—

%p%ﬂﬁ(al)m(ag) + (24 397) (302 - ?) Ki(B) Ko(02)+ (17)
+2= 3%251521(1(52)[(0(51)

3. The final formulas construction. In order to get the solution of
initial problem (1-3), the inverse integral transformations should be applied

Up(p: ) = Unp(p) +2) _ Unp(p) cos A&, Wp(p, &) = 2ZWA,, ) sin Apé.
n=1

The function Upy(p) can be found from the following one-dimensional value
problem (as Ag = 0, Wxop(p) = Wo(p) = 0)

o1 0 9 |
i [t )] = Uolo) =0, 5 1)+ 25000 = a6 1y
It has the form .
a
Unnlp) = 40 | (b (18)
0

The field of the initial displacements of the infinite elastic layer with the
cylindrical cavity is derived

y+ioo
a 1 > 1)
U(p7 €7 T) - 5% / U()p(p) + 2 Z F1 (p)P)\pZ2 COS )\nfl eppo
~—i00 n=1
1 Yy+ioco o )
a * . T
Wip.&m) = 75— / [2 > F3(p)Prpx sin Anfl e’ dp (19)
. n=1
y—ioco

The normal stress can be constructed with their help by the formula [21]

3— 0 1 0
S ) 4 U6+ R W 607)

anga
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4. The subcase of steady-state oscillations. The case of steady-
state oscillations is considered below. With this aim the substitution p = iw,
p? = —w? was made (p - Laplace transform parameter, w - circular frequency
of steady-state oscillations). Taking into account formula (18) and putting in
consideration load of constant intensity P(£) =1 in formula (10), one can get

the following expression instead of (19)

a 20 o= oS A€ - sin A, Ay

Ul &) = gt g Lm0
2a > sin Apé - sin Ay Ax

where

= VA2 —w? Ay = Ai—ﬁ_1w2

K+1
Ag = (A2 — 20%) AZK (A1) Ka(Ag) — EEENZA ALK (Ag) Ko(Aq)+
3R AL K (A1) K (Ag) + (A2 — Lu?) (ﬁpz +w2) K1(A1)Ko(Aa)+
+2=3E NN Ao K (Ag) Ko(Ay)
FV(pw) = =2 (A2 —w?) K1(pA1) K1(A2) + (207 — w?) K1 (pAs) K1 (A1)
EP (p;w) = 28100 Ko(pA1) K1(A2) — (202 — w?) Ko(pA2) K1 (A1)
The normal stress of the layer is derived on the base of displacements (20)

3_ (e’e} )\n o )\n 1
70, 69) = 50— [1 +3° M%anml (21)

A
n=1 n

Fo(p,w) = =2 (A2 = w?) Agp ' K1 (pA1) K1 (A2)+
+ (2)\2 — OJ2> Agp_lKl(pAQ)Kl(Al) + ()\z - wz) AlAQKQ(pAl)Kl (Ag)—

— ()\z — %wz) A%K{)(pAQ)Kl(Al) + (?J)? — 2) AlAgKo(pAl)Kl (AQ)—

— (A2 - 102 (g’f—p\f — w? ) Ko(pAg)Ki(Ar)

3‘@\_/

M= -a=7mn-o a=—, k=3 —4u

5. Discussion and numerical results. The normal stress on the lower
face of the layer £ = 0, 1 < p < 00, was investigated, depending on different
mechanical characteristics: Poisson’s ratio y = 1/3 or p = 1/4, ratio of cavity
radius to layer thickness o = a/h, different variants of natural oscillation
frequencies w = 0.1,0.3,0.5,1, 3. The possibility of the appearance of tensile
stress on the lower face of the layer was considered. The dynamic load of
constant intensity was set on the cylindrical surface of the cavity.



84 Fesenko A. A.

Fig. 2. The normal stress on the lower layer’s face

3. CONCLUSION

The dynamical problem’s solution of the elasticity for the infinite layer
with a cylindrical cavity was derived, when on the faces of the layer the ideal
contact conditions are given and the cavity’s surface is under the influence
of the normal dynamic tensile force, applied at the initial moment of time.
Applying the integral transform method directly to the movement equations
reduces the initial problem to the one-dimensional vector problem. The last
one was solved exactly using the matrix differential calculus.

It should be noted that similar vector boundary problem can be obtained
for the elastic layer weakened by a cylindrical inclusion 0 < p < a, when
different kinds of the boundary conditions at a defect’s surface and the layer’s
faces are set.

At the subcase of the ideal contact conditions on a defect’s surface or on
the edges, the proposed approach makes it possible to obtain an exact solution
of the problem.

When some of the layer’s face is rigidly fixed, it leads the initial prob-
lem to an integral singular equation with respect to an unknown displacement
derivative, so the approximate solution will be constructed. If a vector dif-
ferential equation is inhomogeneous one, the matrix Green’s function and the
fundamental matrix should be found.
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It is worth noting that the difficulties connecting with the integral Laplace
transform inversing exist, so it is often possible to investigate just a case of
steady-state oscillations.

Decenxo I O.
TouHMN PO3B’SI30K JUHAMIUHOT 3AJIAUI /171 HECKIHUYEHHOI'O IAPY 3 LUJIIHAPUYHUM
OTBOPOM

Pesrome

IlobymoBaro XBHILOBE MOJI€ HECKIHIEHHOTO MPYKHOTO IIAPY, MOCIA0TIEHOTO IUJIiHIPUTHIM
OTBOPOM. YMOBH iJIeaJIbHOIO KOHTAKTY 3aJaHO Ha BEPXHIill Ta HMUXKHIi# rpanax mapy. Hop-
MaJIbHE JIMHAMIYHE PO3TAryBaJibHE HABAHTAXKEHHS Ji€ HA IMOBEPXHI IUJIIHIPUYHOTO OTBOPY
B MOYATKOBHII MOMEHT dYacy. lHTerpasibHi meperBopenHs Jlammaca Ta ckiHueHHI Sin— Ta
cos— Dyp’e 3aCTOCOBAHO IIOCIIJOBHO JO OCECUMETPUYHUX PIBHAHb PYyXYy Ta 0 FPAHHYIHUX
YMOB, Ha BiJIMiHYy TPaJMIIAHUM IIi/IXOJaM, KOJIM IHTErpaJibHI II€PETBOPEHHS 3aCTOCOBYIO-
ThCS 0 TIOJIAaHHSI PO3B’S3KiB yepe3 rapmonivni Ta birapmonivni dyukmii. Ile mpuBoguTs o
OJHOBHMMIpHOI BEKTOPHOI OJHOPIIHOI KpaioBol 3ajiadi BiJTHOCHO HEBiIOMHX TpaHCHOPMAaHT
nepeMiienb. 3a71ady PO3B’sS3aHO 3a JIOMOMOTOK0 MATPUYHOTO AMMPEPEHITiaIbHOTO YUCTEHHS.
Iloste Buximunx mepemimnieHb 3HANIEHO TICIS 3aCTOCYBaHHS OOEPHEHUX iHTErpajJbHUX Iepe-
TBOpeHb. [loby/0BaHO HOpMaJIbHE HAIIPYKEHHS Ha I'PAHAX IIPYKHOTO HIapy.

K060 crosa: mounuti po3e’a3or, dunamivHe HABAHTMANCEHHA, UUATHOPUNHUT OMBID, TH-
me2pasvHi NEPEMEOPEHHA.

Decenxo A. A.
TOYHOE PELIEHUE JUHAMUYECKOWN 3AJIAUYM JJISI BECKOHEYHOI'O CJIOSI C LUUJIUHPU-
YECKHUM OTBEPCTUEM

Pesrome

IlocTpoeno BoHOBOE TIOJIE GECKOHEYHOrO YIPYTOTO CJI0si, OCIAOJIEHHOTO IUINHAPUIECKIM
OTBEPCTHEM. YCJIOBUS UI€AJILHOIO KOHTAKTA 3a/[aHbl Ha IpaHsax cjos. HopmasnbHas quHaMu-
qecKasl PacTATHBAIONIAsT HATPY3Ka JefiCTBYeT Ha MOBEPXHOCTH IUJIUHIPUIECKOTO OTBEPCTHUST
B HA4YaJIbHBIN MOMEHT BpemeHu. VlHTerpasbuble npeobpa3oBanus Jlamraca n KOHEIHbIE SIN—
u cos— Pypbe IpPUMEHEHbI OCIeI0BATEILHO K OCECUMMETPUYHBIM YPABHEHUSIM JIBUKEHUS 1
K TPAHUYHBIM YCJIOBUSIM, B OTJIMYHE OT TPAJUIIMOHHBIX MOIXO0B, KOTJa HHTErPAIbLHBIE TIpe-
00pa3oBaHus MPUMEHSIOTCA K IIPEJICTABJICHUSIM PEIIeHUil dyepe3 rapMOHUYHBIE U OGUrapmo-
HU4YecKre QYHKIUU. DTO IPUBOIUT K OJHOMEPHON BEKTOPHOM OIHOPOIHON KpaeBOW 3ajiate
OTHOCHUTEJIbHO HEM3BECTHBIX TPAHCHOPMAHT TIepeMerTeHnil. 3aada perrena ¢ IOMOIIBIO MaT-
puuHoro juddepeHnuaIbHOro ncaucaenus. [loje nCXOHBIX MTepeMeNeHnii HailJIeHO Tocye
NpUMeHeHHsI 0OPaTHBIX NHTErPAJIbHBIX IIpeobpas3oBanmii. [locTpoeHo HOpMasIbHOE HAIIpsIXKe-
HIe Ha TPAaHSX YIPYroro CJIOs.

Karoueswie caosa: mounoe pewerue, OUHAMUYECKAA HAZDY3KG, UUNUHODUMECKAS TOAOCTID,
UHMEZPAALHBIE NPEOOPA3OBAHUA.



86

Fesenko A. A.

10.

11.

12.

13.

14.

15.

16.

17.

REFERENCES

Popov, G. Ya. (2013). An ezact solution of the elasticity theory problem for an infinite
layer weakened by a cylindric cavity. Dokladu RUN, Vol. 451 (5), P. 1-4.

Menshykov, O., Menshykova, M. & Vaysfeld, N. (2017). Ezact analytical solution for a
pie shaped wedge thick plate under oscillating load. Acta Mechanica, Vol. 228 (12), P.
4435-4450.

Malitz, P. Ya., Privarnikov, A. K. (1971). The application of Weber-type transformations
to the solution of elasticity problems for layered media with a cylindrical hole. J. Voprosu
prochnosty i plastichnossty, P. 56 - 64.

Arutunyan, N. H., Abramyan, B. L. (1969). Some azisymmetric problems for a half-space
and an elastic layer with a vertical cylindrical notch. J. Izv. AN Arm. SSR. Mekhanica,
Vol. 22 (3), P. 3-13.

Yahnioglu, N., Babuscu Yesil, U. (2009). Forced vibration of an initial stressed rect-
angular composite thick plate with a cylindrical hole. ASME International Mechanical
Engineering Congress and Ezxposition IMECEQ9, Lake BuenaVista, Florida, USA.

Jain, N. K., Mittal N. D. (2008). Finite element analysis for stress concentration and
deflection in isotopic, orthotropic and laminated composite plates with central circular
hole under transverse static load. Materials Science and Engineering, Vol. 498. P. 115-
124.

Guz’, A. N. (1962). Approzimate method for calculation of the stress concentrations
around curvilinear holes in shells. Prikl. Mekh, Vol. 2 (6), P. 605-612.

Bobyleva, T. (2016). Approzimate method of calculating stresses in layered array. Pro-
cedia Engineering, Vol. 153, P. 103-106.

Vorovich, I. I., Babeshko, V. A. (1979). Dynamic mized problems in elasticity theory for
nonclassical regions, Nauka: Moscow, 320 p.

Bardzokas, D. 1., Kushnir, D. V., Filshtinskii, L. A. (2009). Dynamic problems of the
theory of elasticity for layers and semilayers with cavities. J. Acta Mech., Vol. 208, P.
81-95.

Grinchenko, V. T., Meleshko, V. V. (1981). Harmonic vibrations and waves in elastic
bodies. Kiev: Naukova Dumka, 284 p.

Kubenko, V. D. (1965). Propagation of elastic waves from a circular hole in an
anisotropic inhomogeneous plate. Prikl. Mekh., Vol. 1 (2), P. 25-33.

Panasyuk, N. N. (1978). Action of a plane step elastic wave on a spherical cavity. Waves
in Continuous Media. Kiev: Naukova Dumka, P. 79-85.

Baoping Hei, Zailin Yang, Yao Wang. (2016). Dynamic analysis of elastic waves by an
arbitrary cavity in an inhomogeneous medium with density variation. Mathematics and
Mechanics of Solids. Vol 21 (8), P. 931-940.

Linton, C. M., Thompson, I. (2018). Elastic waves trapped above a cylindrical cavity.
SIAM J. Appl. Math., Vol. 78 (4), P. 2083-2104.

Zhou, Y., Zheng, R.-Y., Liu, G.-B. (2011). Dynamic response of elastic layer on trans-
versely isotropic saturated soil to train load. Yantu Lizue/Rock and Soil Mechanics, Vol.
32 (2), P. 604-610.

Zhuk, A. P., Kubenko, V. D., Zhuk, Ya. A. (2012). Acoustic radiation force on a spherical
particle in a fluid-filled cavity. J. Acoust. Soc. America, Vol. 132 (4), P. 2189-2197.



An ezxact solution of dynamical problem 87

18.

19.

20.
21.
22.

23.

Ming Tao, Ao Ma, Wenzhuo Cao, Xibing Li. (2017). Dynamic response of pre-stressed
rock with a circular cavity subject to transient loading. International Journal of Rock
Mechanics and Mining Sciences, Vol. 99, P. 1-8.

Gaoa, M. (2016). An exact solution for three-dimensional (3D) dynamic response of a
cylindrical lined tunnel in saturated soil to an internal blast load. Soil Dynamics and
Farthquake Engineering, Vol. 90, P. 32-37.

Yih-Hsing Pao. (1983). Elastic waves in solids. J. Appl. Mech, Vol. 50 (4), P. 1152-1164.
Novazkiy, W. (1975). The theory of elasticity. Moscow: Mir, 872 p.

Popov, G. Ya., Abdimanapov, S. A., Efimov, V. V. (1999). Green’s functions and matriz
of one-dimensional boundary value problems. Almati: Rauan, 113 p.

Gradshtein, 1., Rygik, L. (1963). The tables of integrals, series and products. Moscow:
Nauka, 1100 p.



