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INTRODUCTION. Methods for solving nonstationary boundary value problems
can be divided into direct methods which basis includes the separation of variables
method, method of sources (Green’s function method), method of integral transforms,
approximate methods and numerical methods.

The scheme proposed in this article belongs to the direct methods for solv-
ing boundary value problems. In the basis of this scheme is the concept of quasi-
derivatives [10] that lets to bypass the problem of multiplication of generalized func-
tions.

First of all a mixed problem for the heat equation with piecewise continuous
coefficients by the general boundary conditions of the first kind [11] was solved.

The general boundary value problems for hyperbolic equation with piecewise con-
tinuous on spatial variable coefficients and right parts was considered in [7].

This article examines the general first boundary value problem for a hyperbolic
type equation with piecewise constant coefficients and ¢ - singularities. With the use
of the reduction method solving of such a problem is reduced to finding a solution
of the stationary inhomogeneous boundary value problem with the initial boundary
conditions and the mixed problem with the zero boundary conditions for an inhomo-
geneous equation.

MAIN RESULTS

1. Main designations, formulation of the problem and supporting state-
ments. Let I be an open interval of the real axis R, [zg;x,] C I — segment of the
real axis; 0 =29 < 2] <22 < ... < Tj—1 < T < Tjy1... < Tp_1 < Ty =1 — arbitrary
partition of the segment [zo; x,,] of the real axis Ox into n parts.
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Let’s declare the main designations:
6; — characteristic function of the interval [x;;z;41), that is

1) HARS ['/I"ial'i+1)a

0; (x) = i=0,n—1
0, x¢&I[xizit1),
_ n—1
Remark 1. Let ay4, ag;, ¢ = 0,n — 1 be real numbers. If a1 = Y ay1;6;, as =
i=0
n—1 n—1 n—1 ’
> agib;, then a1 - aa = > ay;-agb;. In particular, if a = Y a;0;, then % =
i=0 i=0 i=0

n—1
Z a;lei.
i=0

Let’s declare BVlj)'C(I ) as a class of continuous from the right functions, locally
bounded on I variation [2].

Let mj, 1 =0,n—1, M;,i=1,n—1, \;, ¢ = 0,n — 1 be positive real numbers, g;,
t=0,n—1,s;,i=1,n—1 - real numbers and §; = d;(x — ;) — ¢ - Dirac’s function
with a carrier at the point z = z; € I. Let’s define

n—1 n—1 n—1
i=0 i=1 i=0
n—1

(0) = 9(0) +s(a) = 5 gt + % sl — )

Note that if M (z) is an antiderivative for m(z), then m(m)déf M’ (z). We assume
here, that the function M (x) is extended arbitrarily (for example, zero) on the interval

I/[xo; 2]
Let’s examine the general first boundary value problem for a hyperbolic type
equation

2U U
@) 3 = o (M@ ) + @), s i), €O ()

with the boundary conditions

u(zo,t) = o(t),
u(xnv t) = wn(t)v

t € [0;+00) (2)

and the initial conditions

U(l’, 0) = (PO(x)a

x € [zo; ), (3)
%(‘7"’ 0) = @1($)7
where 1g(t), ¥, (t)€C?(0; +00), wo(), ¢1(z) are piecewise continuous on (xg; zy,).
The method of reduction for finding a solution of the problem is described in
detail in [1,12] for example. In accordance with this method we can find a solution
to the problem as a sum of two functions

u(z,t) = w(z, t) + v(z,t). (4)
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Let’s choose one of the functions for example w(z,t) in a particular method, then
the v(z,t) function will be defined clearly.

2. Building the function w(z,t). Let’s define a function w(z,t) as a solution
of a boundary value problem

/

(A@)wa"), = —f(z) ()

w(wo,t) = Po(t),
w(xnvt) = ¢n(t)7

Note that a variable ¢ is considered as a parameter here.
In the basis of the solving method of the problem (5), (6) is the concept of quasi-
derivatives [9].

t € [0; +00). (6)

— w

Let’s introduce the vectors W = , where wl'l = \w,/, G = ,
wl'] —g()
_ 0 o n—1__
S; = , 8= > 5;-0;. Using these definitions, the quasi-differential equation
—8; =1

(5) simplifies to the equivalent system of differential equations of the first order

— 0 )\ — —
W, = M) ) W+ G+ 8. (7)
0 0

As a solution of the system (7) we take a vector function W(z,t) that belongs
to the BV, (I) class by the x variable and fulfills the system (7) in a generalized
sense [9].

Boundary conditions (6) can be written down in vector form

P-W(xo,t) + Q- W(zn,t) =T (t), (8)
where P = Lo , Q= 00 ,T(t) = Yol
00 10 Pn(t)

Let w;(z,t), wl[»l] (z,t) and g;(z) be defined on the interval [x;;x;41). Let’s define

w(z,t) = i w;(x,)6;. (9)
i=0

On the [z;;z;41) interval the system (7) is represented as

/

=\ [ ws 0 0
0 1]

w; 0
wz[»l] 0

€T

+
+

(10)

where sodéf 0.
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Let’s examine a homogeneous system that corresponds to the system (10)

/
w; 0 - w;

wl[-l] 0 0 wl[-l]

The Cauchy matrix B;(z,s) of such a system is represented as

1 bi(z,s)
Bi(z,s) = , (11)
0 1
where b;(z,s) = [ tdz = &2 .
Let’s define (for an arbitrary k > i)
de
Blay, 7)™ Bi_i(wn,wr-1) - Bioa(@h1,@02) - .. Bi(zi, a1). (12)

The structure (11) of the matrices B; (x,s) allows us to define the structure of
the matrix (12)

k—1
1 Z Tm+1—Tm
B('rlwxi) = m=i Am )
0 1

besides that B(xg, xk)déf E, where F is an identity matrix.
The solution of the system (10) on the interval [z;; ;1) is

Wi(z,t) = Bi(a,z:) - P + /Bi(a:,s) Gi(s) ds =
- —9i (z—z)”
:Bi(m,xi) -P; + 2 s (13)
—gz‘(ﬂﬁ - xz)

where P; is a yet unknown vector [11].
Similarly on the interval [z;_1;2;)

Wisi(z,t) = Bioq(z,mi—1) - Pioy + / Bi_i(z,8) - Gi—1(s)ds =
Ti—1

- —gi—1
=B 1(x,i1)  Pi1+ ' 2

At the point z = z; the conjugation condition has to be fulfilled that is
Wiz, t) = Wi_1(x,t) + S, [13]. As a result we get a recurrence relation
z;

Pi = Bi,1($i7$i,1) . Pi,1 + / Bifl(l'i,s) ‘éifl(s) dS +§7, (14)

Ti—1
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By the method of mathematical induction from (14) the following is received

3
Pi = B(wi,x0) - Po+ Y B(wi,xx) 2y, (15)
k=0
(Tk—2K—1)
_ T . o g 0
where Z = | Bia(wns)-Guoa(s)ds+ 5 = [ 070 P |y ,
Tho —grk—1(Tk — Tp—1) — Sk

k =1,n — 1, note that 70d§f 0, gndéf 0; Py is the initial (unknown) vector.

In order to find Py the boundary conditions (8) should be used, where we define
W (20, 1) P,
W (@n, ) W1 (20, t) = Bu1 (@ Tn1)Po1 + | Bu1(2n,s) - Gui(s)ds =

Tn—1
_ n—1 _
= By_1(@n, Tn—1)B(xpn_1,20)Po + Bp_1(Tn, Tn-1) > B(xn_1,21) 21+
k=1

+ f By_1(2n,8) - Gn_1(s)ds = B(xyn,10)Po + 5. B(xn, k) Zk-
k=1

Ty 1 =

Then [P + QB(zn,20)|Po + Q Y. B(xp,21)Zy =T, and as a result
k=1

Po=[P+Q By, x)] " - <F QZB(%,ﬂfk)Zk> : (16)
k=1

Let’s evaluate

n—1
Z bm (merla xm)

—_
(e}
(e}
e}

—_

[P + Q : B(In, xO)]_l == + . m=0 =
0 0 10/ \g )
1 0 n—1 n—1 .
= , where 0, = 37 b (Tmt1,Tm) = 30 wv UOd:f 0;
_ n _ t 00
T~ QY Blan,z)Zx = vol®)) _ x
k=1 ql}n(t) 1 0
n Tk
> Blan, 1) / Bi1(20,5) - Gr_r(s)ds+ S |. (17)
k=1 Tho1

Let’s write down the right side part (17) in a matrix form

Tk — _ Tk 1 bp_1(xg,s 0
f Bk_1($k,8) -Gk_l(s) ds+ Sy = f 1< ) . ds+
Tr—1 Tr—1 0 1 —0k—1
— br_ cgp—1d
0 xkf,l k-1(@k, ) - Gr-1 ds def I (zk) —
+ = Zp = 1] =Zk;
—Sk — f Jr—1ds — Sk Ik_l(xk) — Sk

Tr—1
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n—1
n I n 1 b (Tmt1, Tm
S5 Bl | 1) 2, b, )
k=1 Il[c—]l(mk) — Sk k=1

Ty—1(zk) > (I’“—l(xk) + (I @) =) %
X
Il[cll1(xk) — Sk

Thus, we receive

> (fm(xk) Y ) - ) S bm<xm+1,xm>)
k=1 m=k

X . =
1;::1 <I’[“111(mk) B 8’“)
Yo(t) 18)
= n n—1
5a®) = £ (Ba(o) + 0L 00 = 50 S b))
k=1 m=k
Let’s substitute (18) to (16)
_ ( 10 )
PO = L L X
Yo(t)
X n n—1 =
6nl0) = 3 (o) + 0 00 = 50) - 'S b))
k=1 m=k
Po(t) 19)

n n—1
gl -2 (1k1<xk> () =) 3 bm<xm+1,xm>>
=1 m=
Based on the formulas (13), (15), (19), after performed transformations an image
of the vector function W;(z,t) on the interval [x;;z;41) is received

x

Wiz, t) = By(x,x;) - (B(xi,xo) -Po+ Y Bz, xk)Zk> + /Bi(x, s)-Gi(s)ds =

k=1

Zq

i—1
1 bz, z 1 o\ — 1 bz, zy Ll Y b(@mgr ) | —
= ( ) . -Po+ ( ) : m=k Z+
0 1 0 1 0o 1 = )
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r 1 bi(x,s _ 1 bi(x,xz;)+o;\ —
—|—/ (#:5) -Gi(s)ds = ( ) - Po+
0 1 0 1

Zq

AR ,é(fk1<xk>+<f,£111<xk>—sk> likbmmmwm)) .

0 1 > (Il[clll(xk) - Sk)
k=1

+ _i{bi(x’S).gids 1 bi(z,x;) + oy Po+

x == : 0
- f gids 0 1

7 1—1

5 (Ik_1<xk)+(1,i”1(xk> RS bm(a:mﬂ,xm))
S (1) =) + 1 @)

bi(z, ;) EZ: (I,Elll(xk) — Sk) + Ii(z)

+ =1 (20)

0

The first coordinate of the vector W;(z,t) in (20) is indeed the searched function
w;(z,t). Therefore

wile,t) = vo(t) + Bala,as) +05) - L=V L v) o)

On On
X (

+ <fk_1<xk> M) - ) Y bm<xm+1,xm>) +

<Ik—1(zk) + (I][glll(xk) - Sk) i bm(xm—&-laxm))) +

m=k

ol
. HMS
=

k=1

m=k
i) Y (I () = se) + i), (21)
k=1
By substituting the expression (21) into (9), the solution on the whole interval
[xo; @] is received.
3. Building the function v(x,t).
Let’s write down a mixed problem for the function v(z,t). Substituting (4) into

(1) and considering that the function w(x,t) fulfills (5), an inhomogeneous equation
is received

v 0 Ov 8w
m(x)w = % ()\(x)ax> = —m(x)ﬁ, x € (xg;xn), tE€ (0;+00). (22)
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Let’s substitute (4) into the initial conditions (3). Initial conditions for the func-
tion v(z,t) are received

v(z,0) = Pp(x),

%(I’,O) = (I)l(x)a

x € [xo; X, (23)

de de
where ®(2) % @o(2) — w(z,0), &1 ()= @1 (2) — 22(x,0).
Since the function w(x,t) fulfills the boundary conditions (6), then from (4) the
boundary conditions for the function v(z,t) will be the following

v(@o,?) t € [0; +00). (24)

0,
v(zp,t) =0,
Therefore under the condition that the solution w(z,t) of the problem (5), (6) is
known, the function v(z,t) is the solution of the mixed problem (22)-(24).
4. The Fourier method and the eigenvalue problem.

4.1. Expansion by eigenfunctions.
Let’s examine the corresponding homogeneous equation for the equation (22)

v 0 Ov
— = — [ ANa)=— | . 2
@) 5 = 5 (V05 (25)
Now let’s find its nontrivial solutions

v(z,t) = sin(wt + ) - X (), (26)

where w is a parameter, € is a constant, X (x) is a yet unknown function [1], that
fulfill the boundary conditions (24).
Let’s substitute (26) into the equation (25). Quasi-differential equation is received

(M) X' () + w?m(z) X (z) = 0. (27)

Let’s substitute (26) into the conditions (24). The following boundary conditions
are received

X(wo) =0,
X(z,) = 0.

(28)

As a solution of the equation (27) consider an absolutely continuous on the interval
[z0; zp] function X () that fulfills it in a generalized sense [9)].

The problem (27), (28) is the eigenvalue problem. The properties of the eigenval-
ues wy and the eigenfunctions of the problem (27), (28) are described in detail in [8].
In particular, it is established that all eigenvalues wy, > 0 [5]; eigenfunctions Xy (z, wy)
are orthogonal with the weight m(z) = dM(x):

/Xi(x,wi) X, (wywy) dM(2) =0, i 4]
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1Xe]? = / X2, wi) dM (z). (20)

If F(x) is an absolutely continuous function that has different analytical expres-
sions on each of the intervals [x;; z;11), that is the function allows the image

F(z) = Z Fi(z) - 6; (30)

on the interval [zg;x,], then its expansion by the eigenfunctions Xy (x,wy) is the
following

.%‘) = iFk -Xk(:c,wk),

k=1
where the Fourier coefficients F} are computed by the formulas

1 Tn
F, = w CE[F(:v) - Xz, w) dM(z). (31)

Integration of the function F'(z) is performed as the Riemann-Stieltjes integral
with respect to the m(z),

Tit1 n—1

/F ) dM (z defzmz/ dx+ZM Fy(z:).

T4

Functions of the type (30) are integrated the following way [9]: if

n—1
:ZFM(.’I)G“ ZFZz Za
i=0

then

/Fl(l‘) . Fg(l‘) dM(l‘) = imli - Mo; / Fli(.’L‘) -ng(x) d.T—F
=0 z;

n—1

+ Z My - Mo - Fri(x;) - Foi(), (32)

=1
Ti41
I / FR(e) dM(a me [ Fr@das
xo T
n—1
+ ZMlgz CFR(xi), k=1 . (33)
i=1
The expression (32) is the dot product of the functions Fj(z) and Fy(x). The
expression (33) is the norm square of the function Fy(z).
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Let’s define
(z,wr) ZX;” (z, wg) (34)

Then for the Fourier coefficients Fy, and for the X (x) from the (31) and (29) the
following is received

n—1 Tit1 n—1

1
Fy = EAL > mi / Fi(x) - X (@, wp)da + > M; - Fy(;) - Xpi(ai, wi) |
k i=0 e i=1

Ti+1 n—1

Xl me / oo+ 3 M- X ).

4.2. Constructional approach to building eigenfunctions.

Let’s introduce a quasi-derivative X s\ xr , avector X = " and matrices
X
0 + 0 . .
A = L, Cy = . Now let’s reduce a quasi-differential
—mp w? 0 —M, w? 0

equation (27) to the system of the first order differential equations

= (Ti AR + ’i Crd(z — mk)> - X. (35)
k=0 k=1

Similarly to the paragraph 2.2, the solution of the system (35) is considered to
be a vector function X (z,w) € BVljc( ) that fulfills it in a sense of the theory of
generalized functions.

Let’s write down the corresponding system on the interval [x;, 2;11) in a following
way

It is known [9] that the jump of the system’s solution at the point z = wz; is
AXi(xi) = C; Xi—1(;).

This gives an opportunity to reduce the problem to the equivalent problem of the
system of impulsive differential equations [6]

X'=> A0 X, (36)

Xi(xi) = Xioa(zi) = C; X1 (i)
and the following boundary conditions
PX(x9) + QX (z,) =0. (37)

The system is examined in detail in [9]. Let’s note the main properties of the
system:
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e this system is proper (namely, it is clearly defined in a sense of the theory of
generalized functions), because the following condition is valid

2

5 0 0 0 0
Ci = 5 = )
—Mi w® 0 0 0

o the fundamental matrix (analog of the Cauchy matrix on the whole interval [xo; z,])
has the following structure

E(vaOaw)déf Z Ei(xaxiaw) ' B($i7x07w) ! oia (38)

= C; - Bij(zijpr,zimj,w), C; = (E+Cy), i = Ln—1,

where B(z;, zo,w)=

1:1@.

B(.’Ei, Zi, w)d;f E.
With a direct verification let’s ascertain that the Cauchy matrix B;(z, s, w) of the
system (36) on the interval [z;;2;11) is the following

_ cosa;(x — 8) sinai(z—s)

Bi(z,s,w) = A ) ; where a; = w, /52

—\ia;sina;(x —s) cosay(z — s
Let’s define

E(wmmo,w)dif br(w)  bia(w) . (39)

bo1(w)  bao(w)

The nontrivial solution X(z,w) of the system (35) can be found as

— — 1 .
X(z,w) = B(z,x0,w) - C, where C' = is some nonzero vector.
Cy

The vector function X (z,w) has to fulfill the boundary conditions (37). That is

{P'E(J?O,l'o,w') +Q§($n,$O7W):| -C :6a

taking into consideration that E(Io, xg,w) = E, the following equation is received

[P—i—Q-E(xn,xo,w)} -C =0. (40)

In order for the nonzero vector C to exist the validity of the following condition
is necessary and sufficient

det {P +Q- E(mn,xo,w)} =0. (41)

Let’s concretize the left part of the characteristic equation (41), taking into con-
sideration the matrices P, @ and (39)

B 10 0 0 b b
det [P +Q- B(ﬂcn,xo,w)] = det + (o) b)) |
00 1.0 ba1(w)  bao(w)
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1 0
= det = bia(w).
bn(w) blg(w)

Let’s make the following proposition.
Remark 2. Characteristic equation of the eigenvalue problem is the following
blg(w) = O (42)

As known [8], the roots wy, of the characteristic equation (42), that are also eigen-
values of the problem (27), (28), are positive and different.

In order to find the nonzero vector C let’s substitute wy, with w into the equation
(40). Then the following vectorial equality is received

1 0 (& 0
bi1(wk)  bia(wg) Cs 0

that is equivalent to the system of equations

C, =0,
bll(wk) -Cy + blg(wk) -Cy = 0.

(43)

Since the determinant of this system bj2(w) = 0, then the system (43) has the
following solutions C; = 0, Cy € R\{0}. By introducing, for example Cy = 1,

_ 0 _ _
C = is received. Note, that the vector C' doesn’t depend on wy. Let Xy (z,wy)

1
be a nontrivial eigenvector that corresponds to the value of wy.

Remark 3. The eigenvectors of the system of differential equations (35) with
boundary conditions (37) have the following structure

_ ~ 0
Xi(z,wg) = Bz, x0,wy) - , keN.
1

Cosequence 1. The eigenfunctions Xy(z,wy) as the first coordinates of the
eigenvectors X (z,wy) can be written down as

~ 0
Xi(x,wy) = (1 0) - Bz, zo,wy) - , k=1,2,3,.... (44)
1
In particular, since the X (x,wy) is (34), then from (38) and (44) follows that

~ ~ 0 _
Xpi(z,wg) = (1 0) - Bi(z, x;,wy) - B(zi, xo,wk) - . , 1=0,n—1. (45)
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5. Building a solution to the mixed problem (22) - (24). In order to solve
the problem (22) - (24) let’s apply the eigenfunctions method [12], what means that
the problem’s solution can be found in a following form

ZTk - Xi(w,wr), (46)

where T} (t) are unknown functions that will be later defined.
Since %?; is in the right side of equation (22) let’s expand it into the Fourier

series by the eigenfunctions X (x,wy) of the boundary problem (27), (28)

61}2 Zwk Xk .’E wk) (47)

Substituting (46) into the equation (22) and considering (47), the following equa-
tion is received

!/

ZTk,/ Xk 513 wk ZTk Xk ((ZZ wk)) —

Zwk Xk iL’ wk)

Considering that the eigenfunctions Xy (x,wy) satisfy the equation (27), we get
an equality

ZTk” Xi(w,wr) = —m(x) Y wi - X, wi) Te(t)—

k=1

Zwk Xk J} wk)

Z (T3 (t) + wf, - Te(t) + wi(t)] - m(x) - Xg(z,wi) = 0. (48)
k=1

Let’s multiply the right and left parts (48) by X;(z,w;) and integrate by the
variable x on the interval [zo;x,). Considering the eigenfunctions’ orthogonality we
get each of the differential equations

T () + w2 - Th(t) = —wi(t), k=1,2,3,.... (49)

The general solution of each of the differential equations (49) is

t
1
Ti(t) = a coswyt + di sinwgt — — [ sinwg(t — ) - wg(s) ds, (50)

Wk
0

where ay, di are unknown constants [3].
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Let’s declare I(t) = -+

Wk
I'.(0) =0 [4].

In order to find the constants aj, di let’s expand the right parts of the initial
conditions (23) into the Fourier series by the eigenfunctions Xy (z,wy)

sinwg(t — s) - wi(s) ds.  Note that I(0) = 0,

o &

Po(z) = Z Doy - X (2, wi), (51)
k=1

Oy(z) =D Prp - X, wi), (52)
k=1

where @, 1 are the corresponding Fourier coefficients.
From (50) follows that

Tk(O) = ag, (53)
Ty (t) = —apwg sin wyt + dpwy, coswit — I (t),
S0
Tk/(O) == dkwk. (54)

Taking into account (46), (51) and the first condition in (23) the following is
o0 o0
received: ) T (0) - Xp(z,wr) = > Por - Xi(z,wi). Now using (53) we receive
k=1 k=1

T(0) = ap = Pog.

Analogically from (46), (52) and the second condition in (23)

o0

ST (0) - Xp(z,wi) = Y. @9 - Xi(z,wy) is received. Using (54) we find
k=1 k=1

P
Tk/(O) = dkwk = q)lk or dk = 71k
Wi
Thus, finally a solution of the mixed problem (22) - (24) is received in a form of
the series

¢
oo
® 1
v(x,t) = Z Doy coswit + w—l:sinwkt T o /Sinwk(t —5) - wg(s) ds| Xi(z,wg).
k=1 o

n—1
Considering (34) and that v(z,t) = > vi(x,t) - 0;, where v;(z,t) are defined on
i=0

the interval [x;;2;41), we receive
- t
Dy . 1 .
vi(x,t) = Doy coswit + — sinwpt — — [ sinwg(t — s) - wi(s) ds| x
Wk Wi
0

k=1

X Xpi (2, wi), (55)
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where the functions Xy;(z,wy) are computed by the formula (45).
Considering (21), (55) the solution of the problem (1)-(3) is received

u(z,t) = i [wi(z,t) + vi(z,t)] - 6;.
=0

CoNCLUSION. The expansion by the eigenfunctions theorem is adapted for the
case of differential equations with piecewise constant (by the spatial variable) coeffi-
cients.

Explicit formulas for finding the solution and its quasi-derivatives for any partial
interval of the main interval that are valid for arbitrary finite numbers of the first
type break points of the earlier referred coeflicients are received.

This scheme of problem examination was considered in a case of rectangular
Cartesian coordinate system. However, it remains valid in a case of any curvilinear
orthogonal coordinates. The advantage of this method is a possibility to examine the
problem on each breakdown segment and then using the matrix calculation to write
down an analytical expression of the solution. Such an approach allows the use of
software tools for solving the problem.

The received results have a direct application to applied problems.
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Tavyita P. M., Ymup O. 0., Kapabun O. O.
TIEPIIA JIUCKPETHO—HEIEPEPBHA KPAMOBA 3AJIAYA 111 PIBHSIHHS TIIEPBOJIIYHOT'O
TUIY 3 KYCKOBO - CTAJIUMU KOE®IIIEHTAMU TA §-OCOBJIMBOCTSIMU

Pesrome

Buepie 3anporonoBano ta 06r'pyHTOBaHO HOBY (POPMAJIbHY CXEMY PO3B’SI3yBaHHS 3araJibHOT
mepIrrol KpaifoBol 3a7a4i A1t PiBHSAHHS TiepbosIiTHOTO TUITY 3 KyCKOBO—CTAIUMU KOoedirieH-
TaM# Ta J-0COOIUBOCTSIMU. B OCHOBY cxeMM pO3B’si3yBaHHSI MOKJIAAEHO KOHIIENIHIO KBa3ino-
XIHUX, Cy9JacHy TEOpilo cucTeM JiHIfHMX JnudepeHIiaJbHIX PIBHAHD, a TAKOXK KJIACHIHUI
meron Pyp’e Ta merox pemykiii. [lepeBaroro MeTomy € MOXKIUBICTD POIIVISHYTH 3329y HA
KOXKHOMY BIJIpi3Ky pO30UTTs, a IMOTIM 3a JIOIIOMOI'0I0 MATPUIHOIO YMCJIEHHS 3aIlIUCATH aHa-
JITUYHMI BUpPa3 PO3B’a3Ky. Takwil mixif J03BOJIsIE 3aCTOCOBYBATH IIPOrpaMHi 3acobu 110
mportecy BUPIiIeHHs 3a7a4i Ta rpadidrol iaocTparii po3s’a3Ky.

Karouosi crosa:  keasidudepenyianvore pishants, kpatiosa 3adavwa, mampuus Kowsi, @ym-
xuyia Jipaxa, 3adava Ha 6aaCHT 3HaveHrHA, memod Dyp’e ma memod eaachuxr GYHKYIT .

Tayut P.M., Ymupo O.1O., Kapabun O.O.
IIEPBAS AUCKPETHO—HEITPEPBIBHAA KPAEBAS 3AIAYA JIsd YPABHEHUWA TUITEPBOJIM-
YECKOT'O THUIIA C KYCOYHO—ITIOCTOSAHHBIMU KOD®OUIIUEHTAMU U —OCOBEHHOCTSIMU

Pesrome

Briepsrie npesiorkena m ob6ocHOoBaHa HOBasi (bOpMasIbHAsI CXeMa DeIleHUusl OOInell IepBoit
KpaeBoii 3a/1avu JJIsl ypaBHEHUs THIEPOOTUIECKOr0 TUIIA C KYCOUHO—TIOCTOSTHHBIMU KO3 hu-
nUeHTaMu U J-OCOOEHHOCTAMU. B OCHOBE CXEMbl PEIeHUsl JIEKUT KOHIENIUS KBA3UIIPOU3-
BOJIHBIX, COBPEMEHHAsT TEOPUsSI CUCTEM JIMHEHHBIX TuddepeHnnaabHbIX YPABHEHHU, a TaKXKe
kinaccuyeckuit meron @ypoe u meto peaykimn. [IpenmyinecTBoM MeTOIA SABIISETCS BO3MOXK-
HOCTb PaCCMOTPETH 331349y Ha KayKJIOM OTpe3Ke pa3bHueHusI, a 3aTeM Ha OCHOBAHUU MaTpUY-
HOT'O UCYHUCJIEHUsI OObEIMHUTD MTOJTyYeHHbIe pelenusi. Takoil moaxo/ mo3BoJIsieT MPUMEHUTH
NIPOTpaMMHBIE CPEJICTBA K IIPOLECCY Pa3peIIeHust 331a91 U rpadUIecKoil HIIIOCTPAIUN Pe-
IIEHUS.

Karoueswie caosa:  keasududdeperyuanrvroe ypashenue, kpaesas 3adavwa, mampuya Kowu,
dynryua Jupara, 3adava na cobecmeentvie 3nauerus, memod Pypve u memod cobcmseerHvLT

Pynryul .
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