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systems, which are introduced for the first time. To illustrate the application of the aver-

aging theorem for such kind of system we considered an example and conducted numerical

modelling. Obtained results extend an application area for previously developed numerical-

ly–asymptotic method of solution for optimal control problems on time scales.
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Introduction. A systematic theory of averaging method for ordinary differential
equations began from the works of [7]. Further it was developing by [2] and the others.
Since then, there have been many works establishing the averaging method for various
types of dynamic systems: differential equations with discontinuous and multi-valued
right-hand side, with Hukuhara derivative, with delay etc. The review of these results
one can find in [11].

On the other hand, the theory of dynamic equations on time scales was introduced
by [5] in order to unify continuous and discrete calculus. In detail, the description of
time scale analysis can be found in the [3, 4].

As far as we know the averaging method in connection with the systems on time
scales was first examined by [12]. In particular, there were studied conditions of
proximity between solutions of the original system on time scale and some generalized
differential equation. From the practical point of view, the interpretation of the last
equation’s solution in terms of given application is somewhat unclear.

Previously we established the scheme of full averaging for dynamic systems on
time scales ( [9]) and in our approach the averaged system has the same time nature
as the original one. Recently we also established the analogous result for partially
averaged systems, [8]. On the base of this scheme, it was developed the numerically–
asymptotic method of solution for optimal control problems on time scales ( [6, 10]).

Auxiliary arguments. We now present some basic information about time
scales according to [4]. A time scale is defined as a nonempty closed subset of the
set of real numbers and usually denoted by T. The properties of the time scale are
determined by the following three functions: 1) the forward-jump operator 𝜎(𝑡) =
inf {𝑠 ∈ T : 𝑠 > 𝑡}; 2) the backward-jump operator 𝜌(𝑡) = sup {𝑠 ∈ T : 𝑠 < 𝑡} (in this
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case, we set inf ∅ = supT and sup∅ = inf T); 3) the granularity function 𝜇(𝑡) =
𝜎(𝑡)− 𝑡.

The behaviour of the forward- and backward-jump operators at a given point of
the time scale specifies the type of this point. If 𝑡 < 𝜎(𝑡), then 𝑡 is called right–
scattered, if 𝑡 = 𝜎(𝑡) — right–dense. Also, point will be called left–scattered when
𝜌(𝑡) < 𝑡 and left–dense when 𝜌(𝑡) = 𝑡. Finally, point is called dense if it is right-
dense and left–dense at the same time and isolated if it is both right–scattered and
left-scattered.

Important role in time scales calculus has the set T𝜅 which is derived from the
time scale T as follows: if T has a left–scattered maximum 𝑚, then T𝜅 = T − {𝑚}.
Otherwise, T𝜅 = T. In what follows, we set [𝑎, 𝑏]T = {𝑡 ∈ T : 𝑎 6 𝑡 6 𝑏}.

Definition 1 ( [4]). Let 𝑓 : T → R and 𝑡 ∈ T𝜅. The number 𝑓Δ(𝑡) is called
Δ-derivative of function 𝑓 at the point 𝑡, if ∀𝜀 > 0 there exists a neighborhood 𝑈 of
the point 𝑡 (i. e., 𝑈 = (𝑡− 𝛿, 𝑡+ 𝛿) ∩ T, 𝛿 < 0) such that

|𝑓(𝜎(𝑡))− 𝑓(𝑠)− 𝑓Δ(𝑡)(𝜎(𝑡)− 𝑠)| 6 𝜀|𝜎(𝑡)− 𝑠| ∀𝑠 ∈ 𝑈.

Definition 2 ( [4]). If 𝑓Δ(𝑡) exists ∀𝑡 ∈ T𝜅, then 𝑓 : T → R is called Δ-
differentiable on T𝜅. The function 𝑓Δ(𝑡) : T𝜅 → R is called the delta-derivative of a
function 𝑓 on T𝜅.

If 𝑓 is differentiable with respect to 𝑡, then 𝑓(𝜎(𝑡)) = 𝑓(𝑡) + 𝜇(𝑡)𝑓Δ(𝑡).

Definition 3 ( [4]). The function 𝑓 : T → R is called 𝑟𝑑-continuous if it is
continuous at the right-dense points and has finite left limits at the left-dense points.
The set of these functions is denoted by 𝐶𝑟𝑑 = 𝐶𝑟𝑑(T) = 𝐶𝑟𝑑(T;R).

The indefinite integral on the time scale takes the form
∫︀
𝑓(𝑡)Δ𝑡 = 𝐹 (𝑡) + 𝐶,

where 𝐶 is integration constant and 𝐹 (𝑡) is the preprimitive for 𝑓(𝑡). If the relation
𝐹Δ(𝑡) = 𝑓(𝑡) where 𝑓 : T → R is an 𝑟𝑑-continuous function, is true for all 𝑡 ∈ T𝜅

then 𝐹 (𝑡) is called the primitive of the function 𝑓(𝑡). If 𝑡0 ∈ T then 𝐹 (𝑡) =
𝑡∫︀
𝑡0

𝑓(𝑠)Δ𝑠

for all 𝑡. The definite Δ-integral on time scale interval is defined by Newton–Leibniz
formula.

Definition 4 ( [4]). A function 𝑝 : T → R is called regressive (positive regressive)
if

1 + 𝜇(𝑡)𝑝(𝑡) ̸= 0, (1 + 𝜇(𝑡)𝑝(𝑡) > 0), 𝑡 ∈ T𝜅.

The set of regressive (positive regressive) and 𝑟𝑑-continuous functions is denoted by
ℛ = ℛ(T) (ℛ+ = ℛ+(T)).

A function 𝑝 from the class ℛ can be associated with a function 𝑒𝑝(𝑡, 𝑡0) which is
the unique solution of Cauchy problem

𝑦Δ = 𝑝(𝑡)𝑦, 𝑦(𝑡0) = 1.

The function 𝑒𝑝(𝑡, 𝑡0) is an analog, by its properties, of the exponential function
defined on R.

In what follows we heavily use the next result.
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Theorem 1 (Substitution rule, [4], theorem 1.98). Assume 𝜈 : T → R is strictly
increasing and T̃ = 𝜈(T) is a time scale. If 𝑓 : T → R is an rd-continuous function
and 𝜈 is differentiable with rd-continuous derivative, then for 𝑎, 𝑏 ∈ T,

𝑏∫︁
𝑎

𝑔(𝑠)𝜈Δ(𝑠)Δ𝑠 =

𝜈(𝑏)∫︁
𝜈(𝑎)

𝑔
(︀
𝜈−1(𝑠)

)︀
Δ̃𝑠. (1)

Various kinds of periodicity on time scale was presented and studied by [1]. The
basic framework is as follows. For arbitrary non-empty susbet T* of the time scale T
including a fixed number 𝑡0 the operators 𝛿± : [𝑡0,+∞) × T* → T* are introduced.
The operators 𝛿+ and 𝛿− associated with the initial point 𝑡0 ∈ T* are said to be
forward and backward shift operators on the set T*, respectively. The first argument
in 𝛿±(𝑠, 𝑡) is called the shift size. The values 𝛿+(𝑠, 𝑡) and 𝛿−(𝑠, 𝑡) indicate translation
of the point 𝑡 ∈ T* to the right and left by 𝑠 units, respectively.

Definition 5 ( [1]). Let T be a time scale with the shift operators 𝛿± associated
with the initial point 𝑡0 ∈ T*. The time scale T is said to be periodic in shifts 𝛿± if
there exists a 𝑝 ∈ (𝑡0,∞)T* such that (𝑝, 𝑡) ∈ 𝐷∓ for all 𝑡 ∈ T*. Furthermore, if

𝑃 = inf {𝑝 ∈ (𝑡0,∞)T* : (𝑝, 𝑡) ∈ 𝐷∓ for all 𝑡 ∈ T*} ≠ 𝑡0,

then 𝑃 is called the period of the time scale T.

Definition 6 ( [1]). Let T be a time scale that is periodic in shifts 𝛿± with the
period 𝑃 . We say that a real valued function 𝑓 defined on T* is periodic in shifts 𝛿±
if there exists a 𝑇 ∈ [𝑃,∞)T* such that (𝑇, 𝑡) ∈ 𝐷± and 𝑓(𝛿±(𝑇, 𝑡)) = 𝑓(𝑡) for all
𝑡 ∈ T*. The smallest such a number 𝑇 ∈ [𝑃,∞)T* is called the period of 𝑓 .

Definition 7 ( [1]). Let T be a time scale that is periodic in shifts 𝛿± with the
period 𝑃 . We say that a real valued function 𝑓 defined on T* is Δ-periodic in shifts 𝛿±
if there exists a 𝑇 ∈ [𝑃,∞)T* such that (𝑇, 𝑡) ∈ 𝐷± for all 𝑡 ∈ T*, the shifts 𝛿±(𝑇, 𝑡)
are Δ-differentiable with rd-continuous derivative with respect to second argument and

𝑓(𝛿±(𝑇, 𝑡))𝛿
Δ
± (𝑇, 𝑡) = 𝑓(𝑡)

for all 𝑡 ∈ T* The smallest such a number 𝑇 ∈ [𝑃,∞)T* is called the period of 𝑓 .

It was shown in [1] that the following propositions about periodicity in shifts are
true.

Proposition 1 ( [1]). If 𝛿+(𝑠, ·) is Δ-differentiable in its second argument, then
𝛿Δ+ (𝑠, ·) > 0.

Proposition 2 ( [1]). Let T be a time scale that is periodic in shifts 𝛿± with the
period 𝑃 and 𝑓 a Δ-periodic in shifts 𝛿± with the period 𝑇 ∈ [𝑃,∞)T* . Suppose that
𝑓 ∈ 𝐶𝑟𝑑(T), then

𝑡∫︁
𝑡0

𝑓(𝑠)Δ𝑠 =

𝛿𝑇±(𝑡)∫︁
𝛿𝑇±(𝑡0)

𝑓(𝑠)Δ𝑠.



Averaging method for dynamic systems on time scales with periodicity 77

Main Results. Let T be an unbounded above time scale that is periodic in shifts
𝛿± with period 𝑃 ∈ (𝑡0,+∞)T* . For simplicity we denote by 𝛿𝑇±(𝑡) the shift operators

with period 𝑇 and by 𝛿
(𝑖)
±𝑇 (𝑡) or 𝛿

(𝑖)(𝑡) the 𝑖-th power of shift operator composition,
dropping argument sometimes.

Consider on T the following dynamic system:

𝑥Δ = 𝜀𝑋(𝑡, 𝑥), 𝑥(𝑡0) = 𝑥0. (2)

Here 𝑥 ∈ R𝑛, 𝜀 > 0 is a small parameter, 𝑋(𝑡, 𝑥) is 𝑛-dimensional vector–function
such that every component is Δ-periodic in shifts 𝛿±(𝑇, 𝑡) function, 𝑇 ∈ [𝑃,+∞)T* .

In correspondence to this original system, we put another dynamic system on the
same time scale as follows:

𝜉Δ = 𝜀 ̃︀𝑋(𝑡, 𝜉), 𝜉(𝑡0) = 𝑥0, (3)

where

̃︀𝑋(𝑡, 𝑥) =

{︃ ̃︀𝑋𝑖(𝑥) =
1

𝛿(𝑖+1)(𝑡0)− 𝛿(𝑖)(𝑡0)

𝛿(𝑖+1)(𝑡0)∫︁
𝛿(𝑖)(𝑡0)

𝑋(𝑡, 𝑥)Δ𝑡,

𝛿(𝑖)(𝑡0) 6 𝑡 < 𝛿(𝑖+1)(𝑡0), 𝑖 = 0, 1, 2, . . .

}︃
.

(4)

The last system (4) we call partially averaged system corresponding to the original
one.

Taking into account Δ-periodical properties of the function 𝑋(𝑡, 𝑥), it is easy to
see, that

̃︀𝑋𝑖(𝜉) =

𝛿(𝑖+1)(𝑡0)∫︀
𝛿(𝑖)(𝑡0)

𝑋(𝑡, 𝜉)Δ𝑡

𝛿(𝑖+1)(𝑡0)− 𝛿(𝑖)(𝑡0)
=

𝛿(𝑖)(𝑡0)∫︀
𝛿(𝑖−1)(𝑡0)

𝑋(𝑡, 𝜉)Δ𝑡

𝛿(𝑖+1)(𝑡0)− 𝛿(𝑖)(𝑡0)
= · · · =

𝛿𝑇+(𝑡0)∫︀
𝑡0

𝑋(𝑡, 𝜉)Δ𝑡

𝛿(𝑖+1)(𝑡0)− 𝛿(𝑖)(𝑡0)
,

that is, ̃︀𝑋𝑖(𝜉) =
𝛿𝑇+(𝑡0)− 𝑡0

𝛿(𝑖+1)(𝑡0)− 𝛿(𝑖)(𝑡0)
̃︀𝑋0(𝜉), 𝑖 = 0, 1, 2, . . . .

We now prove that under general conditions there exists proximity between solu-
tions of systems (2) and (3).

Theorem 2. Let 𝑄 =
{︁
𝑡 ∈ T, 𝑥 ∈ 𝐷

}︁
, 𝑥(𝑡) and 𝜉(𝑡) denote solutions of the

Cauchy problems (2) and (3) respectively. Now suppose the following conditions hold
in 𝑄:

1) every component of vector–function 𝑋(𝑡, 𝑥) is Δ-periodic in shifts 𝛿±(𝑇, 𝑡) func-
tion, 𝑇 ∈ [𝑃,+∞)T* .

2) the function 𝑋(𝑡, 𝑥) is rd-continuous with respect to 𝑡 and regressive. Moreover,
𝑋(𝑡, 𝑥) satisfies conditions of existence and uniqueness of solution for Cauchy
problem such that

∀(𝑡, 𝑥) ∈ 𝑄 ‖𝑋(𝑡, 𝑥)‖ 6𝑀,𝑀 > 0,
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𝑋(𝑡, 𝑥) is Lipschitz continuous with respect to 𝑥 with constant 𝜆 > 0, i. e.

‖𝑋 (𝑡, 𝑥1)−𝑋 (𝑡, 𝑥2)‖ 6 𝜆 ‖𝑥1 − 𝑥2‖ ∀ (𝑡, 𝑥1) , (𝑡, 𝑥2) ∈ 𝑄 ;

3) there exists a constant 𝐾 > 0 such that the following holds for all 𝑖 > 1:

𝛿(𝑖+1)(𝑡0)− 𝛿(𝑖)(𝑡0) 6 𝐾;

4) the solution 𝜉(𝑡) of averaged system (3) with initial value 𝜉(𝑡0) = 𝑥0 ∈ 𝐷′ ⊂ 𝐷
is well defined for all 𝑡 ∈ T𝜅 and with its 𝜌-neighbourhood lies in 𝐷.

Then for any 𝐿 > 0 there exists 𝜀0 (𝐿) > 0 such that for 0 < 𝜀 < 𝜀0 and 𝑡 ∈[︀
𝑡0, 𝑡0 + 𝐿𝜀−1

]︀
∩ T the following estimate holds:

‖𝑥(𝑡)− 𝜉(𝑡)‖ 6 𝐶𝜀. (5)

Proof. It is easy to see that ̃︀𝑋(𝑡, 𝑥) is bounded and Lipschitz continuous with
respect to the second argument. It directly follows from the way of construction (4).
So, we have for any fixed 𝑡 ∈ T⃦⃦⃦ ̃︀𝑋(𝑡, 𝑥′)− ̃︀𝑋(𝑡, 𝑥′′)

⃦⃦⃦
6 𝜆 ‖𝑥′ − 𝑥′′‖ .

Therefore, conditions 1) and 2) imply the existence and uniqueness of solutions for
both original system and averaged one. Moreover, these solutions can be continued
until 𝑥(𝑡) ∈ 𝐷 (accordingly, 𝜉(𝑡) ∈ 𝐷).

Let us write both original and partially averaged systems in integral form:

𝑥(𝑡) = 𝑥0 + 𝜀

𝑡∫︁
𝑡0

𝑋(𝑠, 𝑥(𝑠))Δ𝑠, 𝜉(𝑡) = 𝑥0 + 𝜀

𝑡∫︁
𝑡0

̃︀𝑋(𝑠, 𝜉(𝑠))Δ𝑠.

In the same way as we did establishing the scheme of full averaging for dynamic
systems on time scales in [9], let us estimate the norm of difference between solutions:

‖𝑥(𝑡)− 𝜉(𝑡)‖ =

⃦⃦⃦⃦
⃦⃦𝜀

𝑡∫︁
𝑡0

[︁
𝑋(𝑠, 𝑥(𝑠))− ̃︀𝑋(𝑠, 𝜉(𝑠))

]︁
Δ𝑠

⃦⃦⃦⃦
⃦⃦ 6

6 𝜆𝜀

𝑡∫︁
𝑡0

‖𝑥(𝑠)− 𝜉(𝑠)‖Δ𝑠+ 𝜀

⃦⃦⃦⃦
⃦⃦

𝑡∫︁
𝑡0

[︁
𝑋(𝑠, 𝜉(𝑠))− ̃︀𝑋(𝑠, 𝜉(𝑠))

]︁
Δ𝑠

⃦⃦⃦⃦
⃦⃦ .

We will estimate the last summand on the time scale interval
[︀
𝑡0, 𝑡0 + 𝐿𝜀−1

]︀
∩ T.

By 𝜙(𝑡, 𝜉) denote the last integrand:

𝜙(𝑡, 𝜉) = 𝑋(𝑡, 𝜉(𝑠))− ̃︀𝑋(𝑡, 𝜉(𝑠)).

Consider time interval
[︀
𝛿(𝑖)(𝑡0), 𝛿

(𝑖+1)(𝑡0)
]︀
. By construction, on this interval̃︀𝑋(𝑡, 𝜉) = ̃︀𝑋𝑖(𝜉) and

𝛿(𝑖+1)(𝑡0)∫︁
𝛿(𝑖)(𝑡0)

𝜙(𝑠, 𝜉𝑖)Δ𝑠 = 0,
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where 𝜉𝑖 = 𝜉
(︀
𝛿(𝑖)(𝑡0)

)︀
= 𝑐𝑜𝑛𝑠𝑡.

Further,

⃦⃦⃦⃦
⃦⃦

𝑡∫︁
𝑡0

𝜙(𝑠, 𝜉(𝑠))Δ𝑠

⃦⃦⃦⃦
⃦⃦ 6

⃦⃦⃦⃦
⃦⃦⃦⃦ 𝛿

(𝑁)
+ (𝑡0)∫︁
𝑡0

𝜙(𝑠, 𝜉(𝑠))Δ𝑠

⃦⃦⃦⃦
⃦⃦⃦⃦+

⃦⃦⃦⃦
⃦⃦⃦ 𝑡∫︁
𝛿(𝑁)(𝑡0)

𝜙(𝑠, 𝜉(𝑠))Δ𝑠

⃦⃦⃦⃦
⃦⃦⃦ 6

6

⃦⃦⃦⃦
⃦⃦⃦𝑁−1∑︁
𝑖=0

𝛿(𝑖+1)(𝑡0)∫︁
𝛿(𝑖)(𝑡0)

[𝜙(𝑠, 𝜉)− 𝜙(𝑠, 𝜉𝑖)]Δ𝑠

⃦⃦⃦⃦
⃦⃦⃦+ 𝑡∫︁
𝛿(𝑁)(𝑡0)

‖𝜙(𝑠, 𝜉(𝑠))‖Δ𝑠 6

6
𝑁−1∑︁
𝑖=0

𝛿(𝑖+1)(𝑡0)∫︁
𝛿(𝑖)(𝑡0)

‖𝜙(𝑠, 𝜉)− 𝜙(𝑠, 𝜉𝑖)‖Δ𝑠+ 2𝑀
(︁
𝑡− 𝛿(𝑁)(𝑡0)

)︁
6

6
𝑁−1∑︁
𝑖=0

2𝜆

𝛿(𝑖+1)(𝑡0)∫︁
𝛿(𝑖)(𝑡0)

‖𝜉(𝑠)− 𝜉𝑖‖Δ𝑠+ 2𝑀
(︁
𝛿(𝑁+1)(𝑡0)− 𝛿(𝑁)(𝑡0)

)︁
6

6
𝑁−1∑︁
𝑖=0

2𝜆 · 𝜀𝑀
(︁
𝛿(𝑖+1)(𝑡0)− 𝛿(𝑖)(𝑡0)

)︁
+ 2𝑀𝐾 6

6 2𝜆 · 𝜀𝑀
𝑁−1∑︁
𝑖=0

(︁
𝛿(𝑖+1)(𝑡0)− 𝛿(𝑖)(𝑡0)

)︁
+ 2𝑀𝐾 =

= 2𝜆 · 𝜀𝑀
(︁
𝛿(𝑁)(𝑡0)− 𝑡0

)︁
+ 2𝑀𝐾 =

= 2𝜆 · 𝜀𝑀 · 𝐿
𝜀
+ 2𝑀𝐾 = 2𝑀 (𝜆𝐿+𝐾) .

Thus we have

‖𝑥(𝑡)− 𝜉(𝑡)‖ 6 𝜆𝜀

𝑡∫︁
𝑡0

‖𝑥(𝑠)− 𝜉(𝑠)‖Δ𝑠+ 𝜀

⃦⃦⃦⃦
⃦⃦

𝑡∫︁
𝑡0

𝜙(𝑠, 𝜉(𝑠))Δ𝑠

⃦⃦⃦⃦
⃦⃦ 6

6 𝜆𝜀

𝑡∫︁
𝑡0

‖𝑥(𝑠)− 𝜉(𝑠)‖Δ𝑠+ 𝜀 · 2𝑀 (𝜆𝐿+𝐾) .

Taking into account Gronwall’s inequality and properties of the exponential func-
tion on time scale ( [3]), we obtain as we did before

‖𝑥(𝑡)− 𝜉(𝑡)‖ 6 𝜀 · 2𝑀 (𝜆𝐿+𝐾) · 𝑒𝜆𝜀(𝑡, 𝑡0) < 𝜀 · 2𝑀 (𝜆𝐿+𝐾) · 𝑒𝜆𝐿,

that is,

‖𝑥(𝑡)− 𝜉(𝑡)‖ < 𝐶𝜀,

where 𝐶 = 2𝑀 (𝜆𝐿+𝐾) · 𝑒𝜆𝐿 and this concludes the proof. �
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It is clear that trivial time scales R, Z, and ℎZ are periodic in shifts 𝛿±(𝑇, 𝑡) =
𝑇 ± 𝑡 for various periods 𝑇 . Also, any periodic in shifts 𝛿±(𝑇, 𝑡) function is Δ-
periodic in such cases. Moreover, condition 3) of the last theorem is trivially satisfied.
Thus proved theorem is the closest analogue of the averaging theorem for ordinary
differential equations with a periodic right-hand side.

At the same time to find a good example of periodic in shifts non-trivial time
scales appears to be a hard problem. Finding Δ-periodic functions defined on such
time scales is a yet harder problem. For example, consider some non-trivial time scale
with a condensation point. By definition, a Δ-periodic function has to compensate
decreasing length of the integration interval by increasing magnitude. Hence function
needs to be unbounded as time tends to condensation point and we cannot apply
averaging theorem.

Example 1. Let T =

{︂
𝑡𝑛 = 1− 1

𝑞𝑛
, 𝑛 ∈ N0, 𝑞 > 1

}︂
∪ {1}. This is a time scale

with condensation point 𝑡 = 1, forward jump operator 𝜎(𝑡) = 𝑞−1+𝑡
𝑞 , and graininess

𝜇(𝑡) =
𝑞 − 1

𝑞
(1− 𝑡). Forward shift can be defined as follows:

𝛿+(𝑇, 𝑡) =
𝑞𝑇 + 𝑡− 1

𝑞𝑇
.

It is easy to compute 𝛿Δ+ (𝑇, 𝑡) = 𝑞−𝑇 . We found out a simple function 𝑓(𝑡) =
1

1− 𝑡
such that 𝑓 (𝛿+(𝑇, 𝑡)) 𝛿

Δ
+ (𝑇, 𝑡) = 𝑓(𝑡), i. e. the function 𝑓(𝑡) is Δ-periodic in shifts.

However 𝑓(𝑡) is unbounded above as 𝑡→ 1.

Analyzing the example, we found one more possibility to obtain a more accurate
estimate for proximity between solutions of the original and averaged systems.

Definition 8. Let T be a periodic in shift 𝛿+(𝑃, 𝑡) time scale with a period 𝑃 .
A function 𝑓(𝑡) is called geometric Δ-quasiperiodic function with period 𝑇 > 𝑃 and
factor 𝛾 if the following condition holds:

𝑓 (𝛿+(𝑇, 𝑡)) 𝛿
Δ
+ (𝑇, 𝑡) = 𝛾𝑓(𝑡). (6)

Using substitution rule (1) we can easily prove the important property of geomet-
ric Δ-quasiperiodic function.

Lemma 1. Let T be a time scale that is periodic in shift 𝛿+ with the period 𝑃
and 𝑓 a geometric Δ-quasiperiodic in shift 𝛿+ with the period 𝑇 ∈ [𝑃,∞)T* . Suppose
that 𝑓 ∈ 𝐶𝑟𝑑(T), then

𝑡∫︁
𝑡0

𝑓(𝑠)Δ𝑠 = 𝛾

𝛿𝑇+(𝑡)∫︁
𝛿𝑇+(𝑡0)

𝑓(𝑠)Δ𝑠.

Proof. Substituting 𝜈(𝑠) = 𝛿+(𝑇, 𝑠) and 𝑔(𝑠) = 𝑓 (𝛿+(𝑇, 𝑡)) in (1) and taking
(6) into account we obtain the statement of lemma by direct calculation.
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Now suppose 𝑋(𝑡, 𝑥) in (2) is geometric Δ-quasiperiodic with period 𝑇 and factor
𝛾 for any fixed 𝑥. Consider dynamic system

𝜉Δ = 𝜀 ̂︀𝑋(𝑡, 𝜉), 𝜉(𝑡0) = 𝑥0, (7)

where

̂︀𝑋(𝑡, 𝑥) =

{︃ ̂︀𝑋𝑖(𝑥) =
𝛾𝑖

𝛿(𝑖+1)(𝑡0)− 𝛿(𝑖)(𝑡0)

𝛿+(𝑇,𝑡0)∫︁
𝑡0

𝑋(𝑡, 𝑥)Δ𝑡,

𝛿(𝑖)(𝑡0) 6 𝑡 < 𝛿(𝑖+1)(𝑡0), 𝑖 = 0, 1, 2, . . .

}︃
.

(8)

We can prove now that there exists proximity between solutions of systems (2)
and (7) when 𝑋(𝑡, 𝑥) is a geometric Δ-quasiperiodic function.

Theorem 3. Suppose the conditions 2)–4) of Theorem 2 hold in 𝑄, and besides
this, every component of vector–function 𝑋(𝑡, 𝑥) is geometric Δ-quasiperiodic function
with period 𝑇 and factor 𝛾 for any fixed 𝑥.

Then for any 𝐿 > 0 there exists 𝜀0 (𝐿) > 0 such that for 0 < 𝜀 < 𝜀0 and
𝑡 ∈

[︀
𝑡0, 𝑡0 + 𝐿𝜀−1

]︀
∩ T the following estimate holds:

‖𝑥(𝑡)− 𝜉(𝑡)‖ 6 𝐶𝜀, (9)

where 𝑥(𝑡) and 𝜉(𝑡) denote solutions of the Cauchy problems (2) and (7) respectively.

Proof. From quasiperiodical properties of the function 𝑋(𝑡, 𝑥), it follows easily
that

𝛿(𝑖+1)(𝑡0)∫︁
𝛿(𝑖)(𝑡0)

𝜙(𝑠, 𝜉𝑖)Δ𝑠 = 0, 𝑖 = 0, 1, . . . ,

where 𝜙(𝑡, 𝜉) = 𝑋(𝑡, 𝜉(𝑠)) − ̂︀𝑋(𝑡, 𝜉(𝑠)) and 𝜉𝑖 = 𝜉
(︀
𝛿(𝑖)(𝑡0)

)︀
= 𝑐𝑜𝑛𝑠𝑡. Thus the argu-

mentation of previous proof can be repeated almost literally. For brevity, we omit the
details.

Example 2. Let us use time scale from previous example. Consider dynamic
system

𝑥Δ = 𝜀(−1)−
ln(1−𝑡)

ln 𝑞 𝑥, 𝑥(0) = 1, 𝑡 ∈ T,

that is, 𝑋(𝑡, 𝑥) = (−1)−
ln(1−𝑡)

ln 𝑞 𝑥. We get

𝑋 (𝛿+(𝑇, 𝑡), 𝑥) 𝛿
Δ
+ (𝑇, 𝑡) = 𝑥 · (−1)−

ln

(︃
1− 𝑞𝑇 +𝑡−1

𝑞𝑇

)︃
ln 𝑞 · 1

𝑞𝑇
=

= 𝑥 · (−1)−
ln(1−𝑡)−ln 𝑞𝑇

ln 𝑞 · 1

𝑞𝑇
=

= 𝑥 · (−1)−
ln(1−𝑡)

ln 𝑞 · (−1)𝑇 · 1

𝑞𝑇
=

= 𝑋(𝑡, 𝑥) · (−1)𝑇 · 1

𝑞𝑇
.
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This implies that 𝑋(𝑡, 𝑥) is geometric Δ-quasiperiodic with period 𝑇 = 2 and factor
𝛾 = 𝑞−𝑇 = 𝑞−2.

Further, 𝛿(𝑖+1)(0)− 𝛿(𝑖)(0) =
𝑞𝑇 − 1

𝑞𝑇 (𝑖+1)
6
𝑞𝑇 − 1

𝑞𝑇
. Thus we have

̂︀𝑋𝑖(𝑥) =

(︀
𝑞−𝑇

)︀𝑖
𝛿(𝑖+1)(0)− 𝛿(𝑖)(0)

𝛿+(𝑇,0)∫︁
0

𝑋(𝑡, 𝑥)Δ𝑡 =

=
𝑞2

𝑞2 − 1

1− 1
𝑞2∫︁

0

𝑋(𝑡, 𝑥)Δ𝑡 =

=
𝑞2

𝑞2 − 1
· 𝑥 · 𝑞 − 1

𝑞2
= 𝑥 · 1

𝑞 + 1
.

Hence we have two systems on the same time scale:

{︃
𝑥Δ = 𝜀 · (−1)−

ln(1−𝑡)
ln 𝑞 𝑥,

𝑥(0) = 1,
and

⎧⎨⎩𝜉
Δ = 𝜀 · 𝜉

𝑞 + 1
,

𝜉(0) = 1.

It is not too hard to find exact solution of the linear equation

𝑦Δ = 𝑝𝑦, 𝑦(0) = 𝑦0, 𝑡 ∈ T.

Indeed, all 𝑡 ̸= 1 are isolated points and thus 𝑦(𝜎(𝑡)) = 𝑦(𝑡) + 𝜇(𝑡)𝑦Δ(𝑡). Starting

from 𝑡 = 0 we get 𝑦
(︀
𝜎𝑘(0)

)︀
= 𝑦0

𝑘−1∏︀
𝑖=0

[︀
1 + 𝑝𝜇

(︀
𝜎𝑖(0)

)︀]︀
. This yields that

𝑦(𝑡) = 𝑦0

𝑘−1∏︁
𝑖=0

[︂
1 +

𝑝(𝑞 − 1)

𝑞𝑖+1

]︂
, 𝑘 = − ln(1− 𝑡)

ln 𝑞
, 𝑡 ̸= 1.

Actually 𝑦(𝑡) = 𝑒𝑝(𝑡, 0), i. e. exponential function on time scale T.
In the same way, we obtain exact solutions of original and averaged systems:

𝑥(𝑡) =

𝑘−1∏︁
𝑖=0

[︂
1 + 𝜀 · (−1)𝑖(𝑞 − 1)

𝑞𝑖+1

]︂
,

𝜉(𝑡) =

𝑘−1∏︁
𝑖=0

[︂
1 + 𝜀 · 𝑞 − 1

𝑞𝑖+1(𝑞 + 1)

]︂
.

It seems to be impossible to find a precise analytical estimate of difference |𝑥(𝑡)− 𝜉(𝑡)|
in terms of 𝜀. Instead we conducted numerical modelling and found empirical depen-
dence between proximity of solutions and small parameter 𝜀. The results of modelling
are presented in Figure 1.
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Fig. 1. Numerical modelling of averaging method for quasiperiodic system on time

scale T =

{︂
𝑡𝑛 = 1− 1

𝑞𝑛
, 𝑛 ∈ N0, 𝑞 > 1

}︂
∪ {1}

Conclusion. The aim of this paper is to develop our previous results for the
averaging method on time scales. Following [1] we considered Δ–periodic systems
and obtained a more accurate estimate for proximity between solutions of original and
averaged systems. Moreover, the same result was obtained for dynamic systems with
a quasiperiodic right-hand side, which are introduced for the first time. To illustrate
the application of the averaging theorem for such kind of system we considered an
example and conducted numerical modelling. Obtained results can be used to improve
previously developed numerically–asymptotic method of solution for optimal control
problems on time scales.
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Огуленко О. П.
Метод усереднення для динамiчних систем на часових шкалах з перiодичнi-
стю

Резюме

Метою цiєї статтi є розвиток методу усереднення для аналiза динамiчних систем на
часових шкалах. Отримана бiльш точна оцiнка близькостi розв’язкiв вихiдної та усере-
дненної систем для Δ-перiодичного та Δ-квазiперiодичного випадкiв, причому остiннiй
тип систем уводиться вперше. Для iллюстрацiї застосування теореми усереднення ми
побудували та чисельно дослiдили низку прикладiв. Отриманi результати розширяють
сферу застосування розробленого ранiше чисельно–асимптотичного методу розв’язання
задач оптимального керування на часових шкалах.
Ключовi слова: часова шкала, динамiчна система, метод усереднення, периодична вiд-
носно зсувiв, Δ-перiодична вiдносно зсувiв, Δ-квазiперiодична вiдносно зсувiв .

Огуленко А. П.
Метод усреднения для динамических систем на временных шкалах с пери-
одичностью

Резюме

Целью этой статьи является развитие метода усреднения для анализа динамических
систем на временных шкалах. Получена более точная оценка близости решений исход-
ной и усредненной систем для Δ-периодического и Δ-квазипериодического случая, при-
чем последний тип систем вводится впервые. Для иллюстрации применения теоремы
усреднения мы построен и численно исследован ряд примеров. Полученные результаты
расширяют сферу применения ранее разработанного численно–асимптотического мето-
да решения задач оптимального управления на временных шкалах.
Ключевые слова: временная шкала, динамическая система, метод усреднения, пе-
риодическая относительно смещений, Δ-периодическая относительно смещений, Δ-
квазипериодическая относительно смещений .
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