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AVERAGING METHOD FOR DYNAMIC SYSTEMS ON TIME
SCALES WITH PERIODICITY

This paper aims to improve existing results about using averaging method for analysis of
dynamic systems on time scales. We obtain a more accurate estimate for proximity be-
tween solutions of original and averaged systems regarding A—periodic and A-quasiperiodic
systems, which are introduced for the first time. To illustrate the application of the aver-
aging theorem for such kind of system we considered an example and conducted numerical
modelling. Obtained results extend an application area for previously developed numerical-
ly—asymptotic method of solution for optimal control problems on time scales.
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INTRODUCTION. A systematic theory of averaging method for ordinary differential
equations began from the works of [7]. Further it was developing by [2] and the others.
Since then, there have been many works establishing the averaging method for various
types of dynamic systems: differential equations with discontinuous and multi-valued
right-hand side, with Hukuhara derivative, with delay etc. The review of these results
one can find in [11].

On the other hand, the theory of dynamic equations on time scales was introduced
by [5] in order to unify continuous and discrete calculus. In detail, the description of
time scale analysis can be found in the [3,4].

As far as we know the averaging method in connection with the systems on time
scales was first examined by [12]. In particular, there were studied conditions of
proximity between solutions of the original system on time scale and some generalized
differential equation. From the practical point of view, the interpretation of the last
equation’s solution in terms of given application is somewhat unclear.

Previously we established the scheme of full averaging for dynamic systems on
time scales ( [9]) and in our approach the averaged system has the same time nature
as the original one. Recently we also established the analogous result for partially
averaged systems, [8]. On the base of this scheme, it was developed the numerically—
asymptotic method of solution for optimal control problems on time scales ( [6,10]).

AUXILIARY ARGUMENTS. We now present some basic information about time
scales according to [4]. A time scale is defined as a nonempty closed subset of the
set of real numbers and usually denoted by T. The properties of the time scale are
determined by the following three functions: 1) the forward-jump operator o(t) =
inf {s € T: s> t}; 2) the backward-jump operator p(t) = sup{s € T : s < t} (in this
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case, we set inf@ = sup T and sup@ = inf T); 3) the granularity function u(t) =
o(t) —t.

The behaviour of the forward- and backward-jump operators at a given point of
the time scale specifies the type of this point. If t < o(¢), then t is called right—
scattered, if t = o(t) — right—dense. Also, point will be called left—scattered when
p(t) < t and left-dense when p(t) = t. Finally, point is called dense if it is right-
dense and left—-dense at the same time and isolated if it is both right—scattered and
left-scattered.

Important role in time scales calculus has the set T* which is derived from the
time scale T as follows: if T has a left-scattered maximum m, then T" = T — {m}.
Otherwise, T® = T. In what follows, we set [a,bly = {t € T:a <t < b}.

Definition 1 ( [4]). Let f : T — R and t € T*. The number f2(t) is called
A-derivative of function f at the point t, if Ve > 0 there exists a neighborhood U of
the point t (i. e., U= (t—0,t +3)NT,6 <0) such that

[f(0(t) = f(s) = F2 () (o(t) = 5)| <elo(t) —s| VseU.

Definition 2 ( [4]). If f2(t) exists Vt € T*, then f : T — R is called A-
differentiable on T*. The function f~(t) : T® — R is called the delta-derivative of a
function f on T*.

If f is differentiable with respect to ¢, then f(o(t)) = f(t) + u(t) f2(t).

Definition 3 ( [4]). The function f : T — R is called rd-continuous if it is
continuous at the right-dense points and has finite left limits at the left-dense points.
The set of these functions is denoted by Cyrq = Crqa(T) = Crq(T; R).

The indefinite integral on the time scale takes the form [ f(t)At = F(t) + C,
where C' is integration constant and F'(¢) is the preprimitive for f(t). If the relation
FA(t) = f(t) where f : T — R is an rd-continuous function, is true for all t € T*

¢
then F(t) is called the primitive of the function f(t). If to € T then F(t) = [ f(s)As
to

for all t. The definite A-integral on time scale interval is defined by Newton—Leibniz
formula.

Definition 4 ( [4]). A functionp: T — R is called regressive (positive regressive)
if
L+p()p(t) #0, (1+p@)p(t) >0),  teT"
The set of regressive (positive regressive) and rd-continuous functions is denoted by
R =R(T) (RT =R+(T)).

A function p from the class R can be associated with a function e, (¢, o) which is
the unique solution of Cauchy problem

y® =p(t)y, ylte) =1.

The function e,(¢,t9) is an analog, by its properties, of the exponential function
defined on R.
In what follows we heavily use the next result.
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Theorem 1 (Substitution rule, [4], theorem 1.98). Assume v : T — R is strictly
increasing and T = v(T) is a time scale. If f: T — R is an rd-continuous function
and v is differentiable with rd-continuous derivative, then for a,b € T,

b v(b)
/g(s)VA(s) As = / g (v (s)) As. (1)
a v(a)

Various kinds of periodicity on time scale was presented and studied by [1]. The
basic framework is as follows. For arbitrary non-empty susbet T* of the time scale T
including a fixed number to the operators 04 : [tg, +00) x T* — T* are introduced.
The operators 4. and §_ associated with the initial point tg € T* are said to be
forward and backward shift operators on the set T*, respectively. The first argument
in d+(s,t) is called the shift size. The values d4(s,t) and §_(s,t) indicate translation
of the point t € T* to the right and left by s units, respectively.

Definition 5 ( [1]). Let T be a time scale with the shift operators d+ associated
with the initial point tg € T*. The time scale T is said to be periodic in shifts 6+ if
there exists a p € (to,00)r+ such that (p,t) € D for allt € T*. Furthermore, if

P =inf {p € (to,00)r~ : (p,t) € D5 for allt € T*} # to,
then P is called the period of the time scale T.

Definition 6 ( [1]). Let T be a time scale that is periodic in shifts 61 with the
period P. We say that a real valued function f defined on T* is periodic in shifts d+
if there exists a T € [P,00)p~ such that (T,t) € Dy and f(04(T,t)) = f(t) for all
t € T*. The smallest such a number T € [P, 00)r~ is called the period of f.

Definition 7 ( [1]). Let T be a time scale that is periodic in shifts 61 with the
period P. We say that a real valued function f defined on T* is A-periodic in shifts 6+
if there exists a T € [P, 00)r+ such that (T,t) € Dy for all t € T*, the shifts 6L (T,t)
are A-differentiable with rd-continuous derivative with respect to second argument and

for all t € T* The smallest such a number T' € [P,c0)~ is called the period of f.

It was shown in [1] that the following propositions about periodicity in shifts are
true.

Proposition 1 ( [1]). If 61(s,-) is A-differentiable in its second argument, then
62(s,) > 0.

Proposition 2 ( [1]). Let T be a time scale that is periodic in shifts 61 with the
period P and f a A-periodic in shifts §1 with the period T € [P,o00)r«. Suppose that
f € Cra(T), then

FE(t)

j feas= [ f)as

to 6L (to)
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MAIN RESULTS. Let T be an unbounded above time scale that is periodic in shifts
4 with period P € (ty, +00)p.. For simplicity we denote by 0% (¢) the shift operators
with period T and by 6$)T(t) or 0()(t) the i-th power of shift operator composition,
dropping argument sometimes.

Consider on T the following dynamic system:

2 =eX(t,x), z(ty) = 0. (2)

Here x € R™, € > 0 is a small parameter, X (¢,z) is n-dimensional vector—function
such that every component is A-periodic in shifts d4 (7', t) function, T’ € [P, +00)..

In correspondence to this original system, we put another dynamic system on the
same time scale as follows:

€8 =eX(t,€), £(to) = o, (3)
where
5(i+1)(t0)
- - 1
X(t2) = {Xi(‘r) ~ 6@ (tg) — 60 (o) / Xt DAL
5 (to) (4)

5(i)(t0) <t< (5(”1)(250), 1=0,1,2,... }

The last system (4) we call partially averaged system corresponding to the original
one.

Taking into account A-periodical properties of the function X (¢, x), it is easy to
see, that

8 (ko) 59 (to) 67 (o)
I XAt [ XAt [ X(t,6At
Xi(6) = ot ) s
i) = 5(i+1)(t0) —50@) (to) - 5(i+1)(t0) _ 5(i>(t0) - - 5(i+1)(t0) _ 5@)(%)7
that is,
> 6L (tg) —t - ,
Xi(6) +(fo) — o Xo(&), i=0,1,2,....

- 5 (tg) — 0 (to)
We now prove that under general conditions there exists proximity between solu-
tions of systems (2) and (3).

Theorem 2. Let Q = {t € T,z € D}, x(t) and £(t) denote solutions of the

Cauchy problems (2) and (3) respectively. Now suppose the following conditions hold

1) every component of vector—function X (t,x) is A-periodic in shifts 61 (T,t) func-
tion, T € [P, 400) ..

2) the function X (t,x) is rd-continuous with respect to t and regressive. Moreover,
X (t,z) satisfies conditions of existence and uniqueness of solution for Cauchy
problem such that

Vit,z)eQ || X(tx)|<MM > 0,
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X(t,z) is Lipschitz continuous with respect to x with constant A > 0, i. e.
X (t,21) = X (G2o)| S Alwy —wal| - V(1) (8 a2) € Q
3) there exists a constant K > 0 such that the following holds for all i > 1:
S (t) — 6D (1) < K;
4) the solution &(t) of averaged system (3) with initial value &(ty) = o € D' C D
is well defined for all t € T® and with its p-neighbourhood lies in D.

Then for any L > 0 there exists €9 (L) > 0 such that for 0 < ¢ < gy and t €
[to,to + Le’l] N'T the following estimate holds:

() — @) < Ce. ()

Proof. It is easy to see that X (t,x) is bounded and Lipschitz continuous with
respect to the second argument. It directly follows from the way of construction (4).
So, we have for any fixed t € T

| Xy - Xtam)|| <2l = ")

Therefore, conditions 1) and 2) imply the existence and uniqueness of solutions for
both original system and averaged one. Moreover, these solutions can be continued
until z(¢) € D (accordingly, £(t) € D).

Let us write both original and partially averaged systems in integral form:

z(t) = xo + E/X(S,.’E(S))AS, () = a9 + E/X(s,é(s))As.

In the same way as we did establishing the scheme of full averaging for dynamic
systems on time scales in [9], let us estimate the norm of difference between solutions:

t

o)~ €0l = | [ [X(s.2(6)) - Kss869)] o] <

< e [ lao) - g as e | [ [X(o.606) - Ks.€(50)] s

to

We will estimate the last summand on the time scale interval [to, to + La_l] N T.
By ¢(t,€) denote the last integrand:

Consider time interval [6()(t), 60"V (¢5)]. By construction, on this interval

X(t,€) = Xi(€) and
5(1+1)(t0)

5 (tg)
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where & = ¢ (6 (ty)) = const.

Further,

' 58 (to) ¢
[etscnas| < | [etseonas|+| [ olseenas) <
to tO 6(N)(t0)

N1 6(”1)(150) t
<|X [0 -eseias|+ [ lseolas<
=05 (t0) 5N (1)
N—1 5(i+1)(t0)
< (s €) = (s, &)l As +2M (= 0N (t9)) <
=0 506 (1)
N1 6(i+1)(t0)
<o [ lete) - Gl s+ 20 (53 a0) - 56(10)) <
=056 (1)
N—-1 )
<3 2n-em (5<i+1>(t0) - 5<z>(t0)) Y 2MK <
=0

N-1
<20-eM S0 (50 (t0) — 60 (1)) + 2M K =

1=0
— 9\ eM (5<N>(t0) _ to) FOMEK =

L
=2\-eM = +2MK =2M (AL + K) .
13

Thus we have

N

lot) — €] < A / lx(s) — ()| As + ¢ / (5, €(5))As

to

t
< As/”x(s)—§(s)||As+5~2M()\L+K).

Taking into account Gronwall’s inequality and properties of the exponential func-
tion on time scale ( [3]), we obtain as we did before

lz(t) — @) <e-2M (AL + K) - exc(t,to) <e-2M (AL + K) - e -,
that is,

llz(t) = @) < Ce,
where C = 2M (AL + K) - e*" and this concludes the proof.
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It is clear that trivial time scales R, Z, and hZ are periodic in shifts 04 (7, t) =
T £t for various periods 7. Also, any periodic in shifts d4(7,¢) function is A-
periodic in such cases. Moreover, condition 3) of the last theorem is trivially satisfied.
Thus proved theorem is the closest analogue of the averaging theorem for ordinary
differential equations with a periodic right-hand side.

At the same time to find a good example of periodic in shifts non-trivial time
scales appears to be a hard problem. Finding A-periodic functions defined on such
time scales is a yet harder problem. For example, consider some non-trivial time scale
with a condensation point. By definition, a A-periodic function has to compensate
decreasing length of the integration interval by increasing magnitude. Hence function
needs to be unbounded as time tends to condensation point and we cannot apply
averaging theorem.

1
Example 1. Let T = {tn =1-—,n€Nyq> 1} U{1}. This is a time scale
q

with condensation point t = 1, forward jump operator o(t)

-1
wu(t) = L(l —t). Forward shift can be defined as follows:
q

14t ..
= %, and graininess

T
g +t—-1
1
It is easy to compute 63 (T,t) = ¢~ 7. We found out a simple function f(t) = 13

such that f (64 (T,t)) 02 (T,t) = f(t), i. e. the function f(t) is A-periodic in shifts.
However f(t) is unbounded above as t — 1.

Analyzing the example, we found one more possibility to obtain a more accurate
estimate for proximity between solutions of the original and averaged systems.

Definition 8. Let T be a periodic in shift 6 (P,t) time scale with a period P.
A function f(t) is called geometric A-quasiperiodic function with period T > P and
factor v if the following condition holds:

F(84(T,0) 02(T't) = £ (t). (6)

Using substitution rule (1) we can easily prove the important property of geomet-
ric A-quasiperiodic function.

Lemma 1. Let T be a time scale that is periodic in shift 6. with the period P
and f a geometric A-quasiperiodic in shift 04 with the period T € [P, 00)«. Suppose

that f € Crq(T), then
t sT(t)
[rens=y [ s

67 (to)

Proof. Substituting v(s) = 6(T,s) and g(s) = f (§+(T,t)) in (1) and taking
(6) into account we obtain the statement of lemma by direct calculation.
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Now suppose X (¢, ) in (2) is geometric A-quasiperiodic with period T" and factor
~ for any fixed . Consider dynamic system

€8 =eX(t,6), &(to) = o, (7)
where
_ 54 (Tto)
~ o /\4 . ,Y’L
X(t2) = {Xl(x) — 06 (tg) — 60 (1) / X, 2)At, .
to

5(i)(t0) <t< 5(i+1)(t0), i=0,1,2,... }

We can prove now that there exists proximity between solutions of systems (2)
and (7) when X (¢, x) is a geometric A-quasiperiodic function.

Theorem 3. Suppose the conditions 2)-4) of Theorem 2 hold in @, and besides
this, every component of vector—function X (t,x) is geometric A-quasiperiodic function
with period T and factor v for any fixed x.

Then for any L > 0 there exists €9 (L) > 0 such that for 0 < € < &y and
te [to,to + Ls_l] NT the following estimate holds:

=(t) — £@)|| < Ce, (9)
where x(t) and £(t) denote solutions of the Cauchy problems (2) and (7) respectively.

Proof. From quasiperiodical properties of the function X (¢, x), it follows easily
that
50TV (t0)
/(p(s,fi)As:O, 1=0,1,...,

5 (o)

where o(t,£) = X (t,£(s)) — X(t,£(s)) and & = ¢ (6@ (to)) = const. Thus the argu-
mentation of previous proof can be repeated almost literally. For brevity, we omit the
details.

Example 2. Let us use time scale from previous example. Consider dynamic

system
_In(1—¢)

2 =¢g(=1)" wa z, xz(0)=1, teT,

_ln(1-t)

that is, X (t,z) = (—1)" wa z. We get

1
X (a1, 2) (T 1) = (-1)7 =
ln(l—t)flan 1
=x-(—1) ™« .= =
( s
_In(1—t) 1
o () )T =
q
1
= X(t,) - ()"

q
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This implies that X (t,x) is geometric A-quasiperiodic with period T = 2 and factor
y=q T =q"2
1 T

T
: . - 1
Further, 60D (0) — 6 (0) = 1 1

TG < T Thus we have

~ (q_T)i 6+(T,0)
Xi(w) = 56+ (0) — 6D (0) Xt 2)At =
0
1- %
s ’
=21 / X(t,z)At =
0
q2 . . q — 1 e 1

x =x- .
-1 ¢ q+1
Hence we have two systems on the same time scale:

_ln(1—t)

{IA%(” RS Catras
2(0) =1, £(0) = 1.

It is not too hard to find exact solution of the linear equation

y® =py, y(0) =y, teT.

Indeed, all t # 1 are isolated points and thus y(o(t)) = y(t) + u(t)y>(t). Starting
k=1
from t =0 we get y (0’“(0)) =0 |1 [1 + pu (ai(O))]. This yields that

=0

k—1
(q—1) In(1 —t)
y(t):yog){l‘i‘%]? k:—va t# 1.

Actually y(t) = e,(t,0), 4. e. exponential function on time scale T.
In the same way, we obtain exact solutions of original and averaged systems:

k—1

x(t):g {1+€.(1);(311)}7
k—1
f(t):g {Hs.qiﬁ(qil)].

It seems to be impossible to find a precise analytical estimate of difference |x(t) — £(t)|
in terms of €. Instead we conducted numerical modelling and found empirical depen-
dence between proxzimity of solutions and small parameter . The results of modelling
are presented in Figure 1.
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1.0011
1.001

1.0005 1.00051

16 18

0 1/2 3/4 7/8 1 0 0.44 0.69 0.83 1
a) Solutions of original and averaged a) Solutions of original and averaged
systems, € = 0.005, ¢ = 2 systems, € = 0.005, ¢ = 1.8
1 0.03
1.0025 x(t) 0.025
1.002 0.02
1.0015 0.015
1.001 E(t) 0.01
1.0005 0.005
0.96
'0 067 089 1 0.02 0.04 0.06 0.08 0.1
a) Solutions of original and averaged d) Absolute difference between solutons in
systems, € = 0.005, ¢ = 3 regard to

Fig. 1. Numerical modelling of averaging method for quasiperiodic system on time

1
scale T = {tn: 1——,n¢€eNy,q> 1}U{1}
qn

CONCLUSION. The aim of this paper is to develop our previous results for the
averaging method on time scales. Following [1] we considered A-periodic systems
and obtained a more accurate estimate for proximity between solutions of original and
averaged systems. Moreover, the same result was obtained for dynamic systems with
a quasiperiodic right-hand side, which are introduced for the first time. To illustrate
the application of the averaging theorem for such kind of system we considered an
example and conducted numerical modelling. Obtained results can be used to improve
previously developed numerically—asymptotic method of solution for optimal control
problems on time scales.
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Ozyaenxo O. II.
METO/[ YCEPEAHEHHSA JJIs1 JUHAMIYHUX CUCTEM HA YACOBUX IIKAJIAX 3 MEPIOAUYIHI-
CTIO

Pesrome

Mertoro 1i€l cTaTTi € PO3BUTOK METOMy YCEPEIHEHHS I aHaJIi3a JUHAMIYHUX CHUCTEM Ha
qacoBux mkajax. OTpuMana 611N TOYHA OIiHKa GJIM3BKOCTI PO3B’sI3KiB BUXIIHOI Ta ycepe-
aHeHHOI cucreM A1 A-niepioguaHoro ta A-KBa3imepioguvIHOro BUMA/KIB, IPUIOMY OCTIHHIN
THUII CUCTEM yBOAUThCA Brepire. Jlnsa isumrocTpariil 3acTOCyBaHHsST TEOPEMH YCEPEIHEHHS MU
o0y Iy BaJId Ta YMCEJIBHO JOCIIIUIN HU3KY TpuKIaaiB. OTpuMaHi pe3yapTaru po3NIMPIOTh
cdepy 3aCTOCYBaHHST PO3POOIEHOr0 PaHillle YMCeTbHO—aCUMITOTUIHOTO METOTYy PO3B’ T3aHHST
3329 ONTUMAJIBHOTO KEPYBAHHS HA YaCOBHUX IMTKAJIAX.

Karomo8i crosa: wacosa wkaia, OUHAMIYHA CUCTEME, MEMOO YcepedHeHHA, NePuoduHa 810-
HOCHO 3¢Y6i6, A-nepiodunna 6i0HOCHO 3¢Y616, A-K6a3Inepioduuna 610HOCHO 3CY6I6 .

Oeynenxo A. II.
METO/, YCPEJIHEHUS JJISI JUHAMUYECKUX CUCTEM HA BPEMEHHBIX IIKAJIAX C TIEPU-
OJIMIHOCTHIO

Pesrome

Ilesbro 3TOM CcTATbU SIBJISIETCS PA3BUTHE METOJA YCPEJHEHUs JIjIsi aHAJM3a JIUHAMUYECKUX
CHCTEeM Ha BPEMEHHBIX IKajax. [lomyduena 6ojiee ToOUHAsT OIEHKA OJIM30CTH PENTeHUN UCXOI-
HOM M yCPEIHEHHON cucTeM Jyist A-IePUOIUIECKOro n A-KBAa3UEPUOAUIECKOrO CJLydas, IPU-
9eM IOCJIeTHHUI TUIl CHCTEM BBOJUTCS BIEpBbIe. [[y1s MiLTOCTpannu TPUMEHEHUS T€OPEMBbI
yCPeIHEHUs MbI IIOCTPOEH U YHMCJIEHHO UCCJIEIOBAH Psif IpuMepoB. llomydennble pe3yapraThl
pacmupsT chepy IPUMeHEHNs paHee pa3pabOTaHHOIO YNCIEHHO-aCUMITOTHIECKOTO METO-
Jla peleHus 3a/a49 ONTUMAJILHOTO yIIPABJIECHUS Ha BPEMEHHBIX IIIKAJIaX.

Kaoveswie caosa: epemennas wrkaia, OUHAGMUNECKAA CUCTNEMA, Memod Yycpedrnenus, ne-
PUOIUMECKAS OMHOCUMENLHO cmeuterull, A-nepuoduseckas 0mHOCUMesdvHo cmewenud, A-
KBA3UNEPUOIUNECKAA OMHOCUMEABHO CMEULEHUT .
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