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In the paper, nonlocal boundary value problems are studied for higher order nonlinear ordi-
nary differential equations with delay. More precisely, on a finite interval [a,b], the differential
equation u™ (t) = f(t,u(r1(t)), ... u™ "V (7,(t))) is considered with the boundary conditions
wV(a)=¢ (i=1,....n—1), £(u) = ¢,, where n > 2, f : [a,b] x R" — R is a continuous
function having continuous partial derivatives in the last n arguments, 7; : [a,b] — [a,b]
(i = 1,...,n) are continuous functions satisfying the inequalities 7;(t) < ¢ for a < ¢t < b
(i =1,....n), £: C" ([ab]) — R is a linear bounded functional, and ¢; (i = 1,...,n)
are real constants. Sufficient conditions are established for the unique solvability of that
problem. An analogue of Fredholm’s first theorem is obtained. The conditions of the main
theorems guarantee also the well-posedness of that problem. An example is constructed
showing the optimality of the obtained conditions.
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INTRODUCTION. On a finite interval [a,b], we consider the differential equation
W) = F(taln (), .. a7 (1)) (1)
with the boundary conditions
wV(a)=¢ (i=1,....n—1), (u)=cn. (2)

Here, n > 2, f : [a,b] x R™ — R is a continuous function having continuous partial
derivatives in the last n arguments, 7; : [a,b] — [a,b] (i = 1,...,n) are continuous
functions satisfying the inequalities

Ti(t) <t for a<t<b (i=1,...,n),

¢: C"([ab]) — R is a linear bounded functional, and ¢; (i = 1,...,n) are real
constants.
Important particular cases of (2) are the multi-point boundary conditions

uVa)=¢ (i=1,....n—1), u™(b) = Z apu® (a) + cn (3)
k=0

Received 30.08.2017 (© Partsvania N., 2017



On some nonlocal boundary value problems 117

and
uli= 1)( Y=0¢ (i=1,....n—1), Zﬁku(k 1) (br) = cn, (4)
where
mef0,...n—2}, a<ap<b (k=0,....m), i (b a)m_k[ak]+<1, (5)
= (m—k)!
and .
a<by<b Br=0 (k=1,....n), > Br>0. (6)
k=1

For the differential equation without delay
u™(t) = f(tult),... ")), (7)

boundary value problems of the above mentioned type are subjects of numerous in-
vestigations (see, i.e., [1]- [10], [12]- [16], and the references therein).

Problems of the type (1), (2) are investigated by I. Kiguradze and Z. Sokhadze [11]
in the case, where

ftz,...;xp)x =20 for a <t <b, apsgnzy =71 (k=1,...,n), (8)

where 7 is a sufficiently large positive constant.

I. T. Kiguradze and T. I. Kiguradze [8] have proved a Fredholm type theorem for
problem (7), (2), and based on that theorem they have established efficient conditions
guaranteeing the unique solvability of that problem. In the present paper, analogous
results are obtained for problem (1), (2). These results contain also the case where
condition (8) is violated.

MAIN RESULTS. Before formulating the main results we introduce notations and
definitions used in the paper.

|x| + |z| — x

o]y = L[] =

C([a,b]) is the Banach space of continuous functions w : [a,b] — R with the norm

|l c(fa,p) = max {|u(t)| : a <t<b}.

C"™!([a,b]) is the Banach space of (n — 1)-times continuously differentiable func-
tions u : [a,b] — R with the norm

Jull o () ZW e

Definition 1. We say that a vector function (hll, . hinhot, ... ,hgn) : [a,b] —
R2™ belongs to the set Up(Ty,...,m) if for any measurable functions h; : [a,b] — R
(i=1,...,n) satisfying almost everywhere on [a,b] the inequalities

hii(t) < hi(t) < ho(t) (i=1,...,n),
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the linear boundary value problem
n

o () = 37 hi()e D (m (1)),

i=1
VD) =0 (i=1,...;n—1), £v)=0

has only a trivial solution.

Definition 2. A linear bounded functional £ : C" 1([a,b]) — R is said to be
positive if for any function v € C"1([a,b]), satisfying the conditions

wV({t) >0 for a<t<b (i=1,....n),

the inequality
l(u) >0

holds.

Theorem 1. Let on the set [a,b] x R™ the inequalities

af(tvxlv cee vmn)

(1) <
hh (t) é’xl

<hgilt) (i=1,....n)

hold, where
(hu, . ,hln; hgl, e ,hgn) € Z/Q(Tl, ce 77’n).

Then problem (1), (2) has one and only one solution.

This theorem is an analogue of Fredholm’s first theorem for problem (1), (2).
Along with (1), (2) we consider the perturbed problem

o™ (t) = f(to(ri(t), ... v (7 ()) + a(t), (9)
vV =& (i=1,....n—1), Lv)=26,. (10)

The following theorem is valid.
Theorem 2. Let the conditions of Theorem 1 be fulfilled. Then there exists a

positive constant v such that for any q € C([a,b]) and & € R (i = 1,...,n) problem
(9), (10) has one and only one solution v admitting the estimate

lv —ullgn-1(fap)y <7 < Z i — il + ||Q|C([a,b])>>
=1

where u is a solution of problem (1), (2).

Consequently, the conditions of Theorem 1 guarantee not only the unique solv-
ability but also the well-posedness of problem (1), (2).
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Theorem 3. Let on the set [a,b] x R™ the inequalities

of(tx1,...,xn
—hi(t) < of(tay, ... 2n) <ho (i=1,...n) (11)
(311'
hold, where hg is a positive constant, and h; : [a,b] — [0, + ) (i = 1,...,n) are

continuous functions such that
$ L
—— | (m(t) —a)" " hy(t)dt < 1. (12)
i=1 (TL - Z)' a
If, moreover, € is a positive functional, then problem (1),(2) has one and only one

solution.

For the linear equation

n

ut™(t) = Y pi()u D (m(1) + g(t), (13)

i=1
where p; € C([a,b]) (i =1,...,n) and g € C([a,b]), Theorem 3 has the following form.

Corollary 1. If
; ﬁ /:(Ti(t) —a)" ' [pi(t)]-dt < 1 (14)

and the functional ¢ is positive, then problem (13),(2) has one and only one solution.
It is easy to verify that the following lemma is true.

Lemma. Let either
O(u) = ul™(b) — 2 apu'® (ay)
k=0
and conditions (5) hold, or
C(u) = 3 Brul* 1 (by)
k=0

and conditions (6) hold. Then the functional £ is positive.

By virtue of the above formulated lemma, Theorem 3 and Corollary 1 result in
the following propositions.

Corollary 2. Let on the set [a,b] x R™ inequalities (11) be satisfied, where hg is
a positive constant, and h; : [a,b] — [0, + ) (i = 1,...,n) are continuous functions
satisfying inequality (12). If, moreover, conditions (5) (conditions (6)) are fulfilled,
then problem (1), (3) (problem (1), (4)) has one and only one solution.

Corollary 3. If along with (14) conditions (5) (conditions (6)) are fulfilled, then
problem (13), (3) (problem (13), (4)) has one and only one solution.
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Example. Consider the problem
ul™ (1) = =p(t)yu " (a) + q(1), (15)
Wi a)=0 (i=1,....n—1), « V) =0, (16)

where p, q € C([a,b]), and
p(t) =0 for a<t<b.

This problem can be obtained from problem (13),(2) in the case, where

0 (i=1,....n—=1), pa(t)=—p(t), () =a, L(u)=u""1(b).

b
/ p(t)dt < 1,

then according to Corollary 1, problem (15), (16) has a unique solution. Assume now
that

pi(t)

If

/bp(t)dt 1, (17)
/bq(t)dt +0, (18)

and problem (15),(16) has a solution w. If we integrate both sides of equality (15)
from a to b, then in view of (16) and (17) we find

7u(n71)(a) _ 7u(”71)(a) + /bq(t)dt,

which contradicts inequality (18). Consequently, if conditions (17) and (18) hold,
then problem (15), (16) has no solution. On the other hand, in this case for problem
(15), (16) all the conditions of Corollary 1 are satisfied except the strict inequality
(14), instead of which we have

n b
Z (n—1i) / Z(t)_a)n_i[ i(t)]-dt = 1.

The above constructed example shows that the strict inequality (12) in Theorem 3
(the strict inequality (14) in Corollary 1) cannot be replaced by non-strict one.

Iapmueanin H.
TIPO AEAKY HEJIOKAJIBHY KPAMOBY 3AJIAYY JJIsI HEJITHIHHOTO 3BUYANHOTO JU®EPEH-
LIAJIbHOT'O PIBHSIHHS 13 3AII3HEHHSIM

Pesrome

B crarTi BuBHaeThcsa HesoOKag bHA KpailoBa 3ajada M HETIHIRHUX AudepeHIiaIbHuX PiB-

HSIHBb BUIIOTO MIOPSIZIKY 13 3alli3HeHHsIM. A caMe, Ha CKiHYeHOMY iHTepBaJi [a,b] posrisgaeTbest
. : -1 N

nudepeniiagbie PiBHSIHHS u(")(t) = f(t,u(m(t)),... ul )(Tn(t))) 3 KpaiilOBUMHU yMOBaMU
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u(ifl)(a) =c¢ (i=1,...,n—1),0(u) = cn, me n =2, f : [a,b] x R™ - R — nenepepsua dyu-
KIlisl, SIKa Ma€ HellepepBHI JYaCTHHHI HOXiJHI 338 ocTaHHIMHU N aprymeHTamu, 7; : [a,b] — [a,b]

(i =1,...,n) € HenepepBHUMHU DYHKIIAMH, IO 3aI0BOJIBHIIOTH HepiBHOCTAM T;(t) < t 151
a<t<b(i=1,...n),~L:C" ab]) - R ¢ obmerkenum minifinum byHKIIOHAIOM, a
¢ (i =1,...,n) — niiicai korcranTn. OTpuMaHi JocTaTHI YMOBH €QMHOCTI DO3B'SI3Ky Ta-

KOI 3aj1a4i Ta aHAJIOr mepInoi Teopemu Ppearosbma. Y MOBA OCHOBHOI TEOPEMHU TapaHTYIOTH
TaKOXK KOPEKTHICTh 3a7a4i. CKOHCTPpYHOBAHUN PUKJIIA, KUl JEeMOHCTPYE ONTUMAJbHICTH
OTPUMAHUX YMOB.

Karouosi caosa: Heaokasvha kpatiosa 3adava, 36udatine uBEPeHUiasvHe PIeHAHHA, HeAl-
HIGHUT, 3ani3Herts, eunull Po36 A30%K .

Hapmuysarus H.
O HEKOTOPOU HEJIOKAJIbHOU KPAEBOW 3AJIAYE [JIs HEJIMHEMHOT'O OBBIKHOBEHHOI'O
OUOPEPEHILIMAJIBHOT'O YPABHEHUS C 3AITA3/IbIBAHUEM

Pesrome

B craThe n3y4asThcs HEJOKaJMbHAS KpaeBas 3aJada Jjisl HeJTMHEHHBIX 1uddepeHua bHbIX
yPaBHEHHH BBICIIErO HOPsi/IKA C 3alla3blBAaHNEM. A MMEHHO, Ha KOHEYHOM HMHTepBaje [a,b]
pacemarpusaercs muddepentmansuoe ypasuenue u'™ (1) = f(tu(ri(t)),. .., u™ "V (1.(1)))
C KPaeBbIMHU YCJIOBUSIMU u(ifl)(a) =¢ (i =1,...m—1), l(u) = ch, THEN = 2, [ :
[a,b] x R™ — R — nHenpepbiBHast GyHKIUS, KOTOPasi AMEET HEIIPEPHIBHBIE YACTHBIE IIPOU3BO/I-
HBIE 110 IIOCJIEJJHUM 1L apryMeHTaMm, 7; : [a,b] — [a,b] (i = 1,...,n) ABISIOTCS HENPEPBIBHBIMU
dyHKIUAME, yaoBIeTBOpsOIMMU HepaseHeTBaM T(t) < t qst a < ¢t < b (i = 1,...,n),
£: C" ([a,b]) — R — orpanmuennwiii juneitnbii Gynxmuonan, a ¢; (i = 1,...,n) — Be-
IeCTBEHHbIE KOHCTAHTHI. 110/IydeHbl 10CTaTOYHbIE YCIOBUS €MHCTBEHHOCTH PEIIeHns TaKoi
3aJ1a9M U AHAJIOT TepBOi TeopeMbl PperoabMa. YCJIOBUS OCHOBHON TEOPEMBI TAPAHTUDY-
IOT TaK»K€ KOPPEKTHOCTH 3a/1a4u. CKOHCTPYUPOBaH MPUMED, J€MOHCTPUPYIONIAN ONTHMATb-
HOCTH TIOJTyY€HHBIX YCJIOBHIA.

Kaouesvie caosa: meaokasonan kpaesas 3adaya, obviknosennoe oupdepenyuarvroe ypashe-
Hue, HeauHetioil, 3ana3dueanue, eOUHCMEEHHOE PEULEHUE .
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