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ALLIANCE IN THREE PERSON GAMES

In the present paper, we suggest a new concept of an optimal solution (that we call “coali-

tional equilibrium”) based on the concepts of Nash and Berge equilibria. We apply the

concept of an optimal solution where the outcome of a deviant coalition cannot increase.

Then we determine sufficient conditions of existence of a coalitional equilibrium using the

Germeier convolution. The convolution transforms the problem of determining a coalitional

equilibrium into finding a saddle point of a special antagonistic game that can be effectively

constructed based on the mathematical model of the initiall game. As an example of applica-

tion, we suggest the proof of existence of a coalitional equilibrium in mixed strategies under

“regular” mathematical programming limitations: continuity of players’ outcome functions

and compactness of sets of strategies. This work is intentionally limited to three persons

to avoid cumbersome notations and calculations, even though application of the suggested

method to games with more than three players is promising for solving problems of creating

stable coalitions.
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Introduction. In a three-person game, seven coalitions for joint decision making
and five coalitional structures (partitions of all players into non-intersecting coalitions)
are possible. Over half a century ago, in 1949, twenty-one-years-old PhD student of
Princeton University, John Forbes Nash, suggested in his thesis a concept of “optimal
solution” for a coalitional structure consisting of one player each that he called “equi-
librium” and, following Borel and von Neumann, he proved the existence of such a
solution in mixed strategies.

The concept of equilibrium is based on the stability of a situation considered as an
optimal solution against deviation of any player (not necessarily only one). Stability
lies in that the deviant’s outcome cannot increase. This concept of optimality, later
called “Nash equilibrium”, later found use in economics, sociology, military sciences
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and many other areas. In 45 years, in 1994, Nash, in a common effort with White
House employees John Harsanyi and Reichard Selten won the Nobel Prize “for fun-
damental analysis of equillibria in noncooperative game theory”. Within 20 years,
Nash developed the foundation of the scientific method that played a great role in the
development of world economy.

A different case of a coalitional structure in which all players unite to create a
single coalition became the subject of study of multicriteria optimization, founded
in 1909 by the Italian economist and sociologist Vilfredo Pareto. Here, the idea
is again centered on stability: deviation from an optimal solution causes decrease
of one or several criteria. The mathematical theory of multicriteria optimization
(multiobjective optimization) developed into a separate modern branch of operational
research and also found use in engineering and economics.

What about the “intermediate” coalitional structures that contain at least two
coalitions with at least one of these including at least two players? How does one
formalize the concept of an optimal solution? The present article is dedicated to this
question.

Consider a three-person game with its mathematical model defined by the ordered
triplet

Γ3 = ⟨{1,2,3}, {𝑋𝑖}𝑖=1,2,3, {𝑓𝑖(𝑥)}𝑖=1,2,3⟩ .
In Γ3, {1,2,3} is the set of players, each of whom selects his strategy 𝑥𝑖 ∈ 𝑋𝑖 ⊂
R𝑛𝑖 , 𝑖 = 1,2,3, which results in the situation 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑋 =

∏︀3
𝑖=1𝑋𝑖 ⊂

R𝑛(𝑛 =
∑︀3
𝑖=1 𝑛𝑖). For a given situation 𝑥 in 𝑋, the outcome of each player 𝑖, 𝑖 = 1, 2,3

is defined by the value of his outcome functions 𝑓𝑖(𝑥). The study of conflicts that
are mathematically represented by the three-person game Γ3, is usually conducted
from the standard point of view that defines what players’ behavior should be consid-
ered optimal (rational, reasonable). The main concepts of optimality in mathematical
game theory are [1] the intuitive concepts of profitability, stability, fairnes and justice.
The “dominant” in the non-coalitional (non cooperative) games, the concept of Nash
equilibrium [2], [3], the Berge equilibrium [4], the active equilibrium, and the bargain-
ing equilibrium are based on stability. In addition to the mentioned concepts of opti-
mality, there are several other concepts of optimality prevailing in the non-coalitional
game theory. In this class of games, each conflict participant (player) usually pursues
his own aims; moreover, the players cannot form coalitions with other players for
determining their strategies. The counterpart to the described class of games is the
cooperative games [5], in which any unions – coalitions – of players for the purpose of
pursuing their common interests as well as the possibility of unlimited negotiations
between players that result in the selection and application of a common situation; of
course, it is implied that “pacta sunt servanda” (agreements must be commited to).
The specific concepts of individual [ [5], p.117] and collective or group [ [5], p.125] ra-
tionality are esential for optimality in cooperative game theory. Individual rationality
lies in that each player’s outcome is not less than his guaranteed outcome that he can
“guarantee” by acting independently (applying his maximin strategy). Collective ra-
tionality involves a vector maximum solution such as Pareto, weak pareto, Jeoffrion,
Borwein, etc. optimal situations obtained when all players form one coalition.

The present article heavily relies on the concept of a coalitional structure of a game
(partitioning players into pairwise disjoint subsets). For the three-person game Γ3,
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five coalition structures are possible: P1 = {{1}, {2},{3}}, P2 = {{1,2},{3}}, P3 =
{{1,3}, {2}}, P4 = {{1}, {2,3}},
P5 = {1,2,3}. Here, P1 corresponds to the non-coalitional nature of a game and
P5 corresponds to the coalitional nature of a game. The mentioned conditions of
individual rationality can be formulated for the coalitional structure P1. We will use
the following notations: ∀𝑖 ∈ {1,2,3}, −𝑖 = {{1,2,3}∖{𝑖}}, i.e. for 𝑖 = 1 → −𝑖 = {2,3},
for 𝑖 = 2 → −𝑖 = {1,3}, and, finally, for 𝑖 = 3 → −𝑖 = {1,2}.

Then the condition of individual rationality for a situation 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑋
means that

𝑓𝑜𝑖 = max
𝑥𝑖∈𝑋𝑖

min
𝑥−𝑖∈𝑋−𝑖

𝑓𝑖(𝑥𝑖, 𝑥−𝑖) = min
𝑥−𝑖∈𝑋−𝑖

𝑓𝑖(𝑥
0
𝑖 , 𝑥−𝑖) = 𝑓𝑖(𝑥

0
𝑖 , 𝑥

0
−𝑖) 6 𝑓𝑖(𝑥), 𝑖 = 1,2,3,

(1)
i.e. the application of the maximin strateges 𝑥𝑖, 𝑖 = 1, 2, 3 implies the following
inequalities:

𝑓0𝑖 6 𝑓𝑖(𝑥), 𝑖 = 1,2,3. (2)

We denote by 𝑋0 the set of individually rational situations of the game Γ3. For
the coalitional structure P5 of the game Γ3: within the set of situations 𝑋0 ⊆ 𝑋
a situation 𝑥𝑝 ∈ 𝑋0 ⊆ 𝑋 is Pareto maximal in the three-criteria problem Γ𝑋0 =⟨︀
𝑋0, {𝑓𝑖(𝑥)}𝑖=1,2,3

⟩︀
if ∀𝑥 ∈ 𝑋0 the system of inequalities 𝑓𝑖(𝑥) > 𝑓𝑖(𝑥𝑝), 𝑖 = 1,2,3, of

which at least one is strict, is incompatible. According to Karlin lemma [ [6], p.71], if

3∑︁
𝑖=1

𝑓𝑖(𝑥
𝑝) = max

𝑥∈𝑋0

3∑︁
𝑖=1

𝑓𝑖(𝑥), (3)

then the situation 𝑥𝑝 is Pareto maximal in the problem Γ𝑋0 .

Main Results

1. Conditions of Coalitional Rationality We will formalize the conditions of
coalitional rationality for the coalitional structures P2,P3 and P4. For this purpose,
we will use the suitable combination of the concepts of Berge and Nash equilibria.

For the coalitional structure P2, the coalitional rationality requires the satisfac-
tion of four inequalities:

𝑓1(𝑥
*
1,𝑥

*
2,𝑥3) 6 𝑓1(𝑥

*) ∀𝑥3 ∈ 𝑋3, (4𝑎)

𝑓2(𝑥
*
1,𝑥

*
2,𝑥3) 6 𝑓2(𝑥

*) ∀𝑥3 ∈ 𝑋3, (4𝑏)

𝑓1(𝑥1,𝑥2,𝑥
*
3) 6 𝑓1(𝑥

*) ∀𝑥𝑗 ∈ 𝑋𝑗 (𝑗 = 1,2), (4𝑐)

𝑓2(𝑥1,𝑥2,𝑥
*
3) 6 𝑓2(𝑥

*) ∀𝑥𝑗 ∈ 𝑋𝑗 (𝑗 = 1,2); (4𝑑)

for P3:

𝑓1(𝑥1,𝑥
*
2,𝑥3) 6 𝑓1(𝑥

*) ∀𝑥𝑘 ∈ 𝑋𝑘 (𝑘 = 1,3), (5𝑎)

𝑓3(𝑥1,𝑥
*
2,𝑥3) 6 𝑓3(𝑥

*) ∀𝑥𝑘 ∈ 𝑋𝑘 (𝑘 = 1,3), (5𝑏)

𝑓1(𝑥
*
1,𝑥2,𝑥

*
3) 6 𝑓1(𝑥

*) ∀𝑥2 ∈ 𝑋2, (5𝑐)
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𝑓3(𝑥
*
1,𝑥2,𝑥

*
3) 6 𝑓3(𝑥

*) ∀𝑥2 ∈ 𝑋2; (5𝑑)

and, finally, for P4:

𝑓2(𝑥1,𝑥
*
2,𝑥

*
3) 6 𝑓2(𝑥

*) ∀𝑥1 ∈ 𝑋1, (6𝑎)

𝑓3(𝑥1,𝑥
*
2,𝑥

*
3) 6 𝑓3(𝑥

*) ∀𝑥1 ∈ 𝑋1, (6𝑏)

𝑓2(𝑥
*
1,𝑥2,𝑥3) 6 𝑓2(𝑥

*) ∀𝑥𝑙 ∈ 𝑋𝑙 (𝑙 = 2,3), (6𝑐)

𝑓3(𝑥
*
1,𝑥2,𝑥3) 6 𝑓3(𝑥

*) ∀𝑥𝑙 ∈ 𝑋𝑙 (𝑙 = 2,3). (6𝑑)

A situation 𝑥* ∈ 𝑋 that satisfies all the twelve limitations (4a)–(6d) is called
coalitionally rational for the game Γ3. The set of coalitionally rationall situations of
the game Γ3 is denoted by 𝑋*; obviously, 𝑋* ⊆ 𝑋.

In the process of definition of an optimal solution of the game Γ3, we will use only
6 of the above 13 inequalities (2) and (4a)–(6d), as the other 6 directly follow from
the former 6 inequalities.

This reduction in the number of coalitional rationality conditions is justified iby
the following two Lemmas.

Lemma 1. If (4c), (6c), and (6d) are satisfied for a sitaution 𝑥*, then the fol-
lowing statement holds:

𝑓𝑖(𝑥
*) > 𝑓0𝑖 = max

𝑥𝑖

min
𝑥−𝑖

𝑓𝑖(𝑥𝑖, 𝑥−𝑖) = min
𝑥−𝑖

𝑓𝑖(𝑥
0
𝑖 , 𝑥−𝑖) , 𝑖 = 1,2,3.

where 𝑥0𝑖 is defined in (1) for 𝑖 = 1, 2, 3.

Proof. Indeed, according to (4c),

𝑓1(𝑥
*) > 𝑓1(𝑥1,𝑥2,𝑥

*
3) ∀𝑥𝑗 ∈ 𝑋𝑗 (𝑗 = 1,2).

When applying first player’s strategy 𝑥1 = 𝑥01 (defined in (1) for 𝑖 = 1), from the
previous inequality we get

𝑓1(𝑥
*) > 𝑓1(𝑥

0
1,𝑥2,𝑥

*
3) > min

𝑥2,𝑥3

𝑓1(𝑥
0
1,𝑥2,𝑥3) = max

𝑥1

min
𝑥2,𝑥3

𝑓1(𝑥1,𝑥2,𝑥3) = 𝑓01 .

Analogously, from (6c) follows

𝑓2(𝑥
*) > 𝑓2(𝑥

*
1,𝑥2,𝑥3) ∀𝑥2 ∈ 𝑋2, 𝑥3 ∈ 𝑋3;

For 𝑥2 = 𝑥02, (defined in (1) for 𝑖 = 2)

𝑓2(𝑥
*) > 𝑓2(𝑥

*
1,𝑥

0
2,𝑥3) > min

𝑥1,𝑥3

𝑓2(𝑥1,𝑥
0
2,𝑥3) = max

𝑥2

min
𝑥1,𝑥3

𝑓2(𝑥1,𝑥2,𝑥3) = 𝑓02 .

And finally, according to (6d), setting 𝑥3 = 𝑥03, we get

𝑓3(𝑥
*) > 𝑓3(𝑥

*
1,𝑥2,𝑥

0
3) > min

𝑥1,𝑥2

𝑓3(𝑥1,𝑥2,𝑥
0
3) = 𝑓03 .
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Lemma 2. The following implications are true:

(5𝑎) ⇒ (4𝑎), (4𝑐) ⇒ (5𝑐), (4𝑑) ⇒ (6𝑎), (6𝑐) ⇒ (4𝑏), (5𝑏) ⇒ (6𝑏), (6𝑑) ⇒ (5𝑑).

Remark 1. From Lemmas 1 and 2, it immediately follows that it is sufficient to
use six inequalities, namely (5a), (4c), (4d), (6c), (5b) and (6d), instead of all 13
inequalities in determining the optimal solution of the game Γ3.

Consequently, we arrive to the following concept of the optimal solution of the
game Γ3; from now on, we use the notation 𝑓 = (𝑓1,𝑓2,𝑓3) ∈ R3.

Definition 1. We will call the pair (𝑥*, 𝑓(𝑥*)) ∈ 𝑋 × R3 coalitional equilibrium
for the game Γ3, if the following conditions hold:

1. The six inequalities:

max
𝑥1,𝑥2

𝑓𝑗(𝑥1,𝑥2,𝑥
*
3) = 𝑓𝑗(𝑥

*) (𝑗 = 1,2),

max
𝑥1,𝑥3

𝑓𝑘(𝑥1,𝑥
*
2,𝑥3) = 𝑓𝑘(𝑥

*) (𝑘 = 1,3),

max
𝑥2,𝑥3

𝑓𝑙(𝑥
*
1,𝑥2,𝑥3) = 𝑓𝑙(𝑥

*) (𝑙 = 2,3);

(7)

2. The situation 𝑥* ∈ 𝑋 is Pareto maximal within the set of coalitionallly
rational situations 𝑋* of the game Γ3, i.e. ∀𝑥 ∈ 𝑋* the system of inequalities
𝑓𝑖(𝑥) > 𝑓𝑖(𝑥*) (𝑖 = 1,2,3), of which at least one is strict, is incompatible.

Remark 2. The pair consisting of the situation 𝑥* and corresponding vector
of outcomes 𝑓(𝑥*) = (𝑓1(𝑥

*),𝑓2(𝑥
*),𝑓3(𝑥

*)), is an appropriate concept of optimal
solution for the game Γ3 as the existence of the pair (𝑥*, 𝑓(𝑥*)) immediately answers
the following fundamental questions of the mathematical game theory: a) How the
players should behave in the game Γ3 in terms of strategy selection? and b) what
will they “obtain” as a result? Answer: select their strategies 𝑥*𝑖 from the situation
𝑥* = (𝑥*1,𝑥

*
2,𝑥

*
3) and the components of the vector 𝑓(𝑥*) = (𝑓1(𝑥

*),𝑓2(𝑥
*),𝑓3(𝑥

*)) are
the outcomes they get, respectively, after inplementing the situation 𝑥* = (𝑥*1,𝑥

*
2,𝑥

*
3)

Remark 3. We will list the advantages of the suggested coalitional equilibrium
solution of the game Γ3.

First, according to Lemma 1, the application of 𝑥* ensures the satisfaction of
conditions of individual rationality: each player “obtains” an outcome not less than
what he can “guarantee” by acting independently using his own maximin strategy.

Second, the situation 𝑥* “leads” all the players to the “greatest” strategies (Pareto
maximal relative to other coalitionall rational situations of the game Γ3). This fact
appears to us as an analogue of the collective rationality of the mathematical theory
of cooperative games.

Third, satifsation of requirements (4a)–(6d) means that, for example, for the first
player, the dual-purpose distribution of his resources, namely, not forgetting about
their interests:

first, player 1 aims to provide maximal assistance to the player 2 in the coalition
(union) {1,2 } as a member of the coalition structure P2 (requirements (4c) and (4d);
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second, player 1 helps player 3 as a member of the coalition {1,3} of thecoalition
structure P3 (requirements (5a) and (5b)). Formalization of these two requirements
in the first and second lines of (7) appears to us as a modification of the idea of a Nash
equilibrium concept version features two-criteria scoring players; the third line of (7)
can already be viewed as a realization of the idea of Berge equilibrium for the same
two-criteria case. The second and third players’ behavior can be interpreted similarly.

Finally, the property of coalitional rationality is also based on the principle of
stability since, thanks to (7), deviation from 𝑥* of any coalition (of one or two players)
cannot lead to “increase” of outcomes of the members of the deviant coalition in the
game Γ3 (compared to 𝑓𝑖(𝑥

*) (𝑖 = 1,2,3).

Remark 4. After the optimal solution has been defined, mathematical game the-
ory recommends answering the following two questions:

1) Does such a solution exist?
2) how does one find it?

The followingl part of the article is dedicated to answering these questions. We will
determine sufficient conditions of coalitional equilibrium (section “Sufficient condi-
tions”) and prove its existence in mixed strategies under “common” for the game
theory limitations (section “Theorem of existence in mixed startegies”)

2. Sufficient Conditions We will now proceed to the result that we find “nec
(non) plus ultra” (Latin nothing above that) of the present article.

We will employ two 𝑛-vectors 𝑥 = (𝑥1,𝑥2,𝑥3) ∈ 𝑋 ⊂ R𝑛 (𝑛 =
∑︀3
𝑖=1 𝑛𝑖) and

𝑧 = (𝑧1,𝑧2,𝑧3) ∈ 𝑋 as well as the following seven seven scalar functions:

𝜙1(𝑥,𝑧) = 𝑓1(𝑥1,𝑥2,𝑥
*
3)− 𝑓1(𝑧),

𝜙2(𝑥,𝑧) = 𝑓2(𝑥1,𝑥2,𝑥
*
3)− 𝑓2(𝑧),

𝜙3(𝑥,𝑧) = 𝑓1(𝑥1,𝑥
*
2,𝑥3)− 𝑓1(𝑧),

𝜙4(𝑥,𝑧) = 𝑓3(𝑥1,𝑥
*
2,𝑥3)− 𝑓3(𝑧),

𝜙5(𝑥,𝑧) = 𝑓2(𝑥
*
1,𝑥2,𝑥3)− 𝑓2(𝑧),

𝜙6(𝑥,𝑧) = 𝑓3(𝑥
*
1,𝑥2,𝑥3)− 𝑓3(𝑧),

𝜙7(𝑥,𝑧) =

3∑︁
𝑙=1

𝑓𝑙(𝑥)−
3∑︁
𝑙=1

𝑓𝑙(𝑧),

(8)

and using players’ outcome functions in the game Γ3, we introduce the Germeier
convolution of these seven functions (8)

𝜙(𝑥,𝑧) = max
𝑘=1,...,7

𝜙𝑘(𝑥,𝑧), (9)

defined in 𝑋 × (𝑍 = 𝑋) ⊂ R2𝑛, where 𝑋 =
∏︀3
𝑖=1𝑋𝑖 is the set of situations of the

game Γ3.
A saddle point (𝑥, 𝑧*) ∈ 𝑋×𝑍 of the scalar function 𝜙(𝑥,𝑧) (from (8), (9)) in the

antagonistic(zero-sum two-person) game

Γ𝛼 = ⟨𝑋,𝑍 = 𝑋,𝜙(𝑥,𝑧)⟩ (10)
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is defined by the chain of inequalities

𝜙(𝑥,𝑧*) 6 𝜙(𝑥,𝑧*) 6 𝜙(𝑥,𝑧) ∀𝑥 ∈ 𝑋, 𝑧 ∈ 𝑋, (11)

where 𝑧* ∈ 𝑋* is the maximin strategy, i.e.

max
𝑧∈𝑋

min
𝑥∈𝑋

𝜙(𝑥,𝑧) = min
𝑥∈𝑋

𝜙(𝑥,𝑧*).

Lemma 3. If in the game Γ𝛼 there is a saddle point (𝑥,𝑧*), then the minimax
strategy 𝑧* ∈ 𝑋 of the game Γ𝛼 is a coalitional equilibrium of the initial game Γ3.

Proof By assuming that 𝑧 = 𝑥 in (11), from (8) we obtain that 𝜙(𝑥, 𝑥) = 0, as
all 𝜙𝑘(𝑥, 𝑥) = 0 (𝑘 = 1,...,7). Then, in accordance with (11), (from transitivity) it
follows that

𝜙(𝑥,𝑧*) = max{𝑓1(𝑥1,𝑥2,𝑧*3)− 𝑓1(𝑧
*), 𝑓2(𝑥1,𝑥2,𝑧

*
3)− 𝑓2(𝑧

*), 𝑓1(𝑥1,𝑧
*
2 ,𝑥3)− 𝑓1(𝑧

*),

𝑓3(𝑥1,𝑧
*
2 ,𝑥3)− 𝑓3(𝑧

*), 𝑓2(𝑧
*
1 ,𝑥2,𝑥3)− 𝑓2(𝑧

*), 𝑓3(𝑧
*
1 ,𝑥2,𝑥3)− 𝑓1(𝑧

*),

3∑︁
𝑖=1

𝑓𝑖(𝑥1,𝑥2,𝑥3)−
3∑︁
𝑖=1

𝑓𝑖(𝑧
*
1 ,𝑧

*
2 ,𝑧

*
3)} 6 0

for ∀𝑥𝑖 ∈ 𝑋𝑖 (𝑖 = 1,2,3). This implies the seven following inequalities:

𝑓𝑗(𝑥1,𝑥2,𝑧
*
3) 6 𝑓𝑗(𝑧

*) ∀𝑥𝑗 ∈ 𝑋𝑗 (𝑗 = 1,2),

𝑓𝑘(𝑥1,𝑧
*
2 ,𝑥3) 6 𝑓𝑘(𝑧

*) ∀𝑥𝑘 ∈ 𝑋𝑘 (𝑘 = 1,3),

𝑓𝑙(𝑧
*
1 ,𝑥2,𝑥3) 6 𝑓𝑙(𝑧

*) ∀𝑥𝑙 ∈ 𝑋𝑙 (𝑙 = 2,3),

3∑︁
𝑟=1

𝑓𝑟(𝑥1,𝑥2,𝑥3) 6
3∑︁
𝑟=1

𝑓𝑟(𝑧
*) ∀𝑥 = (𝑥1,𝑥2,𝑥3) ∈ 𝑋* ⊆ 𝑋.

(12)

The first three inequalities in (12) mean that the situation 𝑧* ∈ 𝑋 is (because of
these inequalities and (7)) coalitionally rational in the game Γ3. The last inequality
in (12) and the inclusion 𝑋* ⊆ 𝑋 “guarantee” [ [6], p. 71] the Pareto maximality of
the situation 𝑥* in the three-criteria problem Γ𝑋* = ⟨𝑋*, {𝑓𝑖(𝑥)}𝑖=1,2,3⟩.

Remark 5. From Lemma 3, we obtain the following constructive method of find-
ing a coalitional equilibrium of the game Γ3:

first, build, using (8) and (9), the function 𝜙(𝑥,𝑧),
second, find a saddle point (𝑥,𝑧*) of the function 𝜙(𝑥,𝑧) (satifsfying the chain of

inequalities from (11)),
third, find the values of the three functions 𝑓𝑖(𝑧

*) (𝑖 = 1,2,3).
Then the pair (𝑧*,𝑓(𝑧*)) = (𝑓1(𝑧

*),𝑓2(𝑧
*),𝑓3(𝑧

*)) ∈ 𝑋 × R3 forms a coalitional
equilibrium of the game Γ3.

In the following section, we will use the following lemma.

Lemma 4. If 𝑁 + 1 scalar functions 𝜙𝑗(𝑥,𝑧) (𝑗 = 1,...,𝑁 + 1) are continuous in
𝑋 × 𝑍 and the sets 𝑋,𝑍 ∈ comp(𝑅𝑛) (are compact), then the function

𝜙(𝑥,𝑧) = max
𝑗=1,...,𝑁+1

𝜙𝑗(𝑧,𝑧) (13)

is also continuous on 𝑋 × 𝑍.
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The proof of an even more general result can be found in many textbooks on
operational research, for example, in [ [7], p. 54], it even appeared in textbooks on
convex analysis [ [8], p. 146].

3. Theorem of Existence in Mixed Strategies

3.1 Mixed Strategy Situations and Mixed Extension of the Game We
will present the mixed strategy extension of the game Γ3 that includes mixed startegy
situations and mathematical expectation of the outcome functions.

We will analyze the three-person game Γ3, assuming continuity of 𝑓𝑖(𝑥) on the

product of compacts 𝑋 =
∏︀3
𝑖=1𝑋𝑖. In each compact 𝑋𝑖 ⊂ R𝑛𝑖 (𝑖 = 1,2,3) we will

consider the Borel 𝜎-algebra ℬ(𝑋𝑖) – set of subsets of 𝑋𝑖 such that 𝑋𝑖 ∈ ℬ(𝑋𝑖),
where ℬ(𝑋𝑖) is continuous relative to the operations of complement and addition of a
countable number of sets from ℬ(𝑋𝑖); moreover, ℬ(𝑋𝑖) is the minimal 𝜎-algebra that
contains all completed subsets of the compact 𝑋𝑖.

When there are no situations 𝑥* in the class of pure strategies 𝑥𝑖 ∈ 𝑋𝑖 (𝑖 = 1,2,3)
that satisfy requirements 1 and 2 of Definition 1, following the approach of Borel [9],
Von Neumann [10], Nash [3] and their followers, we need to enlarge the set 𝑋𝑖 of pure
strategies 𝑥𝑖 to mixed ones. Then we will establish the existence of the coaltional
equilibrium (analog of Definition 1) in the mixed strategy situations game formalized
using mixed strategy situations of the game Γ3.

Thus we will build Borel 𝜎-algebras ℬ(𝑋𝑖) based on each compact 𝑋𝑖 (𝑖 = 1,2,3)
and the Borel 𝜎-algebra ℬ(𝑋) for the set of situations 𝑋 =

∏︀
𝑖∈N𝑋𝑖 assuming that

ℬ(𝑋) contains all Cartesian products of Borel 𝜎-algebras ℬ(𝑋𝑖) (𝑖 = 1,2,3).

According to mathematical game theory, we will associate a mixed strategy 𝜈𝑖(·)
of the player 𝑖 to a probability measure in the compact 𝑋𝑖. By definition [ [11], p.
271] and notations from [ [12], p. 284], a probablilty measure is a non-negative scalar
function 𝜈𝑖(·) defined on the Borel 𝜎-algebra ℬ(𝑋𝑖) of subsets of the compact 𝑋𝑖 ⊂ R𝑛
satisfying the following two conditions:

1) 𝜈𝑖

(︂⋃︀
𝑘

𝑄
(𝑖)
𝑘

)︂
=
⋃︀
𝑘

𝜈𝑖

(︁
𝑄

(𝑖)
𝑘

)︁
for any sequence {𝑄(𝑖)

𝑘 }∞𝑘=1 of pairwise disjoint

elements from ℬ(𝑋𝑖) (property of countable additivity of the function 𝜈𝑖(·));
2) 𝜈𝑖(𝑋𝑖) = 1 (property of normality) and thus 𝜈𝑖(𝑄

(𝑖)) 6 1, ∀𝑄(𝑖) ∈ ℬ(𝑋𝑖).

We will denote the set of mixed strategies of player 𝑖 (𝑖 = 1,2,3) as {𝜈𝑖}.
We will also note that the product measures 𝜈(𝑑𝑥) = 𝜈1(𝑑𝑥1)𝜈2(𝑑𝑥2)𝜈3(𝑑𝑥3),

in accordance with the known definitions from [ [11], p. 370] (and notations from
[ [12], p. 123]) are probability measures in the set of situations 𝑋. The set of these
probability measures (situations) we will denote by {𝜈}. Note once more that during
the process of building of the product measure 𝜈(𝑑𝑥) as the 𝜎-algebra of the subsets
of the set 𝑋1 ×𝑋2 ×𝑋3 = 𝑋, the minimal 𝜎-algebra ℬ(𝑋) containing all Cartesian
products 𝑄(1) × 𝑄(2) × 𝑄(3), where 𝑄(𝑖) ∈ ℬ(𝑋𝑖) (𝑖 = 1,2,3) is selected. From the
known properties of probabilistic measures [ [14], p. 288; [ [11], p. 254] follows that
the sets of all possible measures 𝜈𝑖(𝑑𝑥𝑖) (𝑖 = 1,2,3) and 𝜈(𝑑𝑥) are weakly closed and
weakly compact in itself [ [11], p. 212, 254; [13], p. 48, 49]. For {𝜈}, for example, it
means that for any infinite sequence {𝜈(𝑘)} (𝑘 = 1,2,...) one can select a subsequence
{𝜈(𝑘𝑗)} (𝑗 = 1,2,...) that will weakly converge to 𝜈(0)(·) ∈ {𝜈}. That is to say, for any
continuous in 𝑋 function 𝜓(𝑥) the following statement holds:
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lim
𝑗→∞

ˆ
𝑋

𝜓(𝑥)𝜈(𝑘𝑗)(𝑑𝑥) =

ˆ
𝑋

𝜓(𝑥)𝜈(0)(𝑑𝑥)

and 𝜈(0) ∈ {𝜈}. Given the continuity of 𝜓(𝑥), integrals
´
𝑋

𝜓(𝑥)𝜈(𝑑𝑥) (expectations)

are defined using the Fubini theorem

lim
𝑗→∞

ˆ
𝑋

𝜓(𝑥)𝜈(𝑑𝑥) =

ˆ
𝑋1

ˆ
𝑋2

ˆ
𝑋3

𝜓(𝑥)𝜈3(𝑑𝑥3)𝜈2(𝑑𝑥2)𝜈1(𝑑𝑥1),

where the order of integrations can be altered.
Now we introduce the mixed extension of the game Γ3 based on its pure strategies⟨

{1,2,3}, {𝜈𝑖}𝑖=1,2,3,

{︂
𝑓𝑖[𝜈] =

ˆ
𝑋

𝑓𝑖[𝑥]𝜈(𝑑𝑥)

}︂
𝑖=1,2,3

⟩
, (14)

where, as in Γ3, {1,2,3} is the set of players, but {𝜈𝑖} is now the set of mixed strategies
𝜈𝑖(·) of player 𝑖; in the game Γ3 each player selects his mixed strategy 𝜈𝑖(·) ∈ {𝜈𝑖};
the expectation (outcome function) of player 𝑖 is defined on the set of mixed strategy
situations {𝜈} by:

𝑓𝑖(𝜈) =

ˆ
𝑋

𝑓𝑖(𝑥)𝜈(𝑑𝑥) (𝑖 = 1,2,3).

For the game (14) we will define an analog of the concept of coalitional equilibrium
situation 𝑋*.

Definition 2. A mixed-strategy situation 𝜈*(·) ∈ {𝜈} is called coalitional equi-
librium of the mixed extension (14) (or coalitional equilibrium in mixed strategies for
the game Γ3) if

first, the situation 𝜈*(·) is coalitionally rational for the game (14), i.e.,

max
𝜈1(·)𝜈2(·)

𝑓𝑗(𝜈1,𝜈2,𝜈
*
3 ) = 𝑓𝑗(𝜈

*) (𝑗 = 1,2),

max
𝜈1(·)𝜈3(·)

𝑓𝑘(𝜈1,𝜈
*
2 ,𝜈3) = 𝑓𝑘(𝜈

*) (𝑘 = 1,3),

max
𝜈2(·)𝜈3(·)

𝑓𝑙(𝜈
*
1 ,𝜈2,𝜈3) = 𝑓𝑙(𝜈

*) (𝑗 = 2,3);

(15)

(We will denote the sets of coalitional equilibria of the game (14) by {𝜈*});
second, 𝜈*(·) is Pareto maximal in the three-criteria problem

⟨{𝜈*}, {𝑓𝑖(𝜈)}𝑖=1,2,3⟩

i.e. for all 𝜈(·) ∈ {𝜈*}, the system of inequalities

𝑓𝑖(𝜈) > 𝑓𝑖(𝜈
*) (𝑖 = 1,2,3),

of which at least one is strict, is incompatible;

The sufficient condition of Pareto maximality is obvious; it is the essence of the
following remark.
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Remark 6. Mixed situation 𝜈*(·) ∈ {𝜈} is Pareto maximal in Γ̃𝜈 = ⟨{𝜈*},
{𝑓𝑖(𝜈)}𝑖=1,2,3⟩ if

max
𝜈(·)∈{𝜈*}

3∑︁
𝑖=1

𝑓𝑖(𝜈) =

3∑︁
𝑖=1

𝑓𝑖(𝜈
*).

3.2 Preliminaries In this section we provide some prelimary results.

Lemma 5. Suppose in the game Γ3 the sets 𝑋𝑖 are compact, the outcome func-
tions 𝑓𝑖(𝑥) are continuous on 𝑋 = 𝑋1×𝑋2×𝑋3 and the set of coalitionally equilibrial
mixed-strategy situations {𝜈*} (satisfying (15)) is not empty.

Then {𝜈*} is weakly compact in itself subset of the set of situations {𝜈} of the
game (14) (in mixed strategies).

Proof. To establish the weak compactness in itself of the set {𝜈*}, we will select
an arbitrary scalar continuous function 𝜓(𝑥) with domain the compact set 𝑋, and an
infinite sequence of situations

𝜈(𝑘)(·) ∈ {𝜈*} (𝑘 = 1,2,...) (16)

of the game (14) in mixed strategies. From (16) (and therefore from {𝜈*} ⊂ {𝜈})
follows {𝜈(𝑘)(·)} ⊂ {𝜈}. As noted above, the set {𝜈} is weakly compact in itself,
therefore the subsequence {𝜈(𝑘𝑗)(·)} and the measure 𝜈(0)(·) ∈ {𝜈} such that

lim
𝑗→∞

ˆ
𝑋

𝜓(𝑥)𝜈(𝑘𝑗)(𝑑𝑥) =

ˆ
𝑋

𝜓(𝑥)𝜈(0)(𝑑𝑥).

exist. We will then apply the regular method of proving such statements (as in,
for example, [ [15], p. 86]).

Lemma 6. Compactness (closedness and boundedness) in the criteria space R3

of the set

𝑓({𝜈*}) =
⋃︁

𝜈(·)∈𝜈*

𝑓(𝜈),

where, as we recall, the vector 𝑓(𝑥) = (𝑓1(𝑥),𝑓2(𝑥),𝑓3(𝑥)), can be proven analogously.

Lemma 7. If in game the (14) the sets 𝑋𝑖 ∈ comp(R𝑛) and 𝑓𝑖(·), 𝑖 = 1,2,3 are
continuous on 𝑋, then for the function

𝜙(𝑥,𝑧) = max
𝑟=1,...,7

𝜙𝑟(𝑥,𝑧) (17)

the following inequality is correct:

max
𝑟=1,...,7

ˆ
𝑋×𝑋

𝜙𝑟(𝑥,𝑧)𝜇(𝑑𝑥)𝜈(𝑑𝑧) 6
ˆ
𝑋×𝑋

max
𝑟=1,...,7

𝜙𝑟(𝑥,𝑧)𝜇(𝑑𝑥)𝜈(𝑑𝑧) (18)

for all 𝜇(·) ∈ {𝜈}, 𝜈(·) ∈ {𝜈}; here, we recall that the scalar functions 𝜙𝑟(𝑥,𝑧) are
defined in (8), (9).
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Proof. Indeed, from (17), for all 𝑥,𝑧 ∈ 𝑋, follow the seven inequalities

𝜙𝑟(𝑥,𝑧) 6 max
𝑗=1,...,7

𝜙(𝑥,𝑧) (𝑟 = 1,...,7).

After integration of both parts of these inequalities with an arbitrary product
measure 𝜇(𝑑𝑥)𝜈(𝑑𝑧) as the measure being integrated, we obtain

𝜙𝑟(𝜇,𝜈) =

ˆ
𝑋×𝑋

𝜙𝑟(𝑥,𝑧)𝜇(𝑑𝑥)𝜈(𝑑𝑧) 6
ˆ
𝑋×𝑋

max𝜙𝑗(𝑥,𝑧)𝜇(𝑑𝑥)𝜈(𝑑𝑧)

for all 𝜇(·) ∈ {𝜈}, 𝜈(·) ∈ {𝜈} and each 𝑟 = 1,...,7. Therefore,

max
𝑟=1,...,7

𝜙𝑟(𝜇,𝜈) = max
𝑟=1,...,7

ˆ
𝑋×𝑋

𝜙𝑟(𝑥,𝑧)𝜇(𝑑𝑥)𝜈(𝑑𝑧) 6

6
ˆ
𝑋×𝑋

max
𝑟=1,...,7

𝜙𝑟(𝑥,𝑧)𝜇(𝑑𝑥)𝜈(𝑑𝑧) ∀𝜇(·) ∈ {𝜈}, 𝜈(·) ∈ {𝜈}

which proves (18).

Remark 7. In fact, (18) is a generalization of the well-known property of the
maximization operation: maximum of a sum cannot be greater than the sum of the
maximums.

3.3 Existence Theorem We will provide the main result of this article: the
existence of a mixed strategy coalitional equilibrium situation in the game Γ3 has
been proven.

Theorem 1. If in the game Γ3 the sets 𝑋𝑖 ∈ comp(R𝑛) and 𝑓𝑖(·)𝑖 = {1,2,3} are
continuous on 𝑋, then the game has a coalitional equilibriuml mixed-strategy situation.

Proof. Consider the auxiliary antagonistic game introduced in (10)

Γ𝛼 = ⟨{1,2},{𝑋,𝑍 = 𝑋}, 𝜙(𝑥,𝑧)⟩ .

In the game Γ𝛼, the set 𝑋 of strategies 𝑥 of the first player (maximizing 𝜙(𝑥,𝑧)).
A saddle point (𝑥,𝑧*) ∈ 𝑋 ×𝑋 of the game Γ𝛼 satisfies, by definition, the following
chain of inequalities for all 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝑋

𝜙(𝑥,𝑧*) 6 𝜙(𝑥,𝑧*) 6 𝜙(𝑥,𝑧).

Now we will associate to Γ𝛼 its mixed extension Γ̃𝛼 = ⟨{1,2}, {𝜇}, {𝜈}, 𝜙(𝜇,𝜈)⟩, where
{𝜈} is the set of mixed strategies 𝜈(·) of the second player, and {𝜇} = {𝜈} is the set
of mixed strategies 𝜇(·) of the first player, whose outcome function (expectation) are
defined by

𝜙(𝜇,𝜈) =

ˆ
𝑋×𝑋

𝜙(𝑥,𝑦)𝜇(𝑑𝑥)𝜈(𝑑𝑧).

A saddle point (𝜇0, 𝜈*) defined by the inequalities

𝜙(𝜇,𝜈*) 6 𝜙(𝜇0,𝜈*) 6 𝜙(𝜇0,𝜈) (19)
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for all 𝜇(·) ∈ {𝜈}, 𝜈(·) ∈ {𝜈} will also be a solution of the game Γ̃𝛼 (mixed extension
of Γ𝛼).

This pair (𝜇0,𝜈*) is called a mixed-strategy solution of Γ𝛼.
In 1952, Gliksberg [16] established the theorem of existence of a Nash equilibrium

situation in a non-coalitional game of 𝑁 > 2 persons in mixed strategies, from which
we deduce the statement for its particular case – antagonistic game Γ𝛼: suppose that
in the game Γ𝛼 the set 𝑋 ⊂ R𝑛 is non-empty and compact and the outcome function
of the first player 𝜙(𝑥,𝑧) is continuous in 𝑋 ×𝑋 (we use the continuity of 𝜙(𝑥,𝑧) in
Lemma 3). Then for the game Γ𝛼, there exists a solution (𝜇0, 𝜈*) as defined in (19),
i.e. there exists a mixed-strategy saddle point.

Given (18), the inequalities (19) takes the following form:
ˆ
𝑋×𝑋

max
𝑗=1,...,7

𝜙𝑗(𝑥,𝑧)𝜇(𝑑𝑥)𝜈
*(𝑑𝑧) 6

ˆ
𝑋×𝑋

max
𝑗=1,...,7

𝜙𝑗(𝑥,𝑧)𝜇
0(𝑑𝑥)𝜈*(𝑑𝑧) 6

6
ˆ
𝑋×𝑋

max
𝑗=1,...,7

𝜙𝑗(𝑥,𝑧)𝜇
0(𝑑𝑥)𝜈(𝑑𝑧)

for all 𝜇(·) ∈ {𝜈}, 𝜈(·) ∈ {𝜈}. Assuming in

𝜙(𝜇0,𝜈) =

ˆ
𝑋×𝑋

max
𝑗=1,...,7

𝜙𝑗(𝑥,𝑧)𝜇
0(𝑑𝑥)𝜈(𝑑𝑧)

the measure 𝜈𝑖(𝑑𝑧𝑖) = 𝜇0
𝑖 (𝑑𝑥𝑖) (𝑖 ∈ N) and then 𝜈(𝑑𝑧) = 𝜇0(𝑑𝑥). Given (18), we

obtain that 𝜙(𝜇0,𝜇0) = 0. Analogously follows the equality 𝜙(𝜈*,𝜈*) = 0 and then
from (19) we get

𝜙(𝜇0,𝜈*) = 0 (20)

From 𝜙(𝜇0,𝜇0) = 0 and the chain of preceding inequalities (using transitivity), we
come to

𝜙(𝜇,𝜈*) =

ˆ
𝑋×𝑋

max
𝑗=1,...,7

𝜙𝑗(𝑥,𝑧)𝜇(𝑑𝑥)𝜈
*(𝑑𝑧) 6 0 ∀𝜇(·) ∈ {𝜈}.

In agreement with the Lemma 7, we have

0 >
ˆ
𝑋×𝑋

max
𝑗=1,...,7

𝜙𝑗(𝑥,𝑧)𝜇(𝑑𝑥)𝜈
*(𝑑𝑧) > max

𝑗=1,...,7

ˆ
𝑋×𝑋

𝜙𝑗(𝑥,𝑧)𝜇(𝑑𝑥)𝜈
*(𝑑𝑧)

Therefore, for all 𝑗 = 1,...,7, we have

ˆ
𝑋×𝑋

𝜙𝑗(𝑥,𝑧)𝜇(𝑑𝑥)𝜈
*(𝑑𝑧) 6 0 ∀𝜇(·) ∈ {𝜈}.

There are two cases.
First case (𝑗 = 1,...,6). Here, in accordance with (20), (18) and normality of

𝜈𝑗(·), we obtain (see (8))

0 >
ˆ
𝑋×𝑋

𝜙𝑗(𝑥,𝑧)𝜇(𝑑𝑥)𝜈
*(𝑑𝑧) =

ˆ
𝑋×𝑋

(𝑓𝑗(𝑧1,𝑧2,𝑧3)− 𝑓𝑗(𝑧))𝜇(𝑑𝑥)𝜈
*(𝑑𝑧) =

=

ˆ
𝑋×𝑋

𝑓𝑗(𝑧1,𝑧2,𝑧3)𝜇(𝑑𝑥)𝜈
*(𝑑𝑧)−

ˆ
𝑋

𝑓𝑗(𝑧)𝜈
*(𝑑𝑧)

ˆ
𝑋

𝜇(𝑑𝑥) = 𝑓𝑗(𝜇1,𝜇2,𝜈
*
3 )− 𝑓𝑗(𝜈

*)

∀𝜇𝑗(·) ∈ {𝜈𝑗} (𝑗 = 1,2),
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Analogously,

0 >
ˆ
𝑋×𝑋

𝜙𝑘(𝑥,𝑧)𝜇(𝑑𝑥)𝜈
*(𝑑𝑧) = 𝑓𝑘(𝜇1,𝜈

*
2 ,𝜇3)− 𝑓𝑘(𝜈

*) ∀𝜇𝑘(·) ∈ {𝜈𝑘} (𝑘 = 1,3)

0 >
ˆ
𝑋×𝑋

𝜙𝑙(𝑥,𝑧)𝜇(𝑑𝑥)𝜈
*(𝑑𝑧) = 𝑓𝑙(𝜈

*
1 ,𝜇2,𝜇3)− 𝑓𝑙(𝜈

*) ∀𝜇𝑙(·) ∈ {𝜈𝑙} (𝑙 = 2,3).

According to Definition 2, 𝜈*(·) is a coalitionally rational situation in mixed strategies
for the game Γ3.

Second case (𝑗 = 7) Once again, in accordance with (20), (18) and normality of
𝜈(·), we obtain

0 >
ˆ
𝑋×𝑋

[︃
7∑︁
𝑟=1

𝑓𝑟(𝑥)−
7∑︁
𝑟=1

𝑓𝑟(𝑧)

]︃
𝜇(𝑑𝑥)𝜈*(𝑑𝑧) =

ˆ
𝑋

7∑︁
𝑟=1

𝑓𝑟(𝑥)𝜇(𝑑𝑥)

ˆ
𝑋

𝜈*(𝑑𝑧)−

−
ˆ
𝑋

𝜇(𝑑𝑥)

ˆ
𝑋

7∑︁
𝑟=1

𝑓𝑟(𝑥)𝜈
*(𝑑𝑧) =

7∑︁
𝑟=1

𝑓𝑟(𝜇)−
7∑︁
𝑟=1

𝑓𝑟(𝜈
*) ∀𝜇(·) ∈ {𝜈}.

Then, after considering Remark 7, we see that the mixed-strategy situation 𝜈*(·) ∈
{𝜈} of the game Γ3 is Pareto maximal in the problem

Γ̃𝜈 = ⟨{𝜈*},{𝑓𝑖(𝜈)}𝑖=1,2,3⟩ .

Therefore, for the mixed-strategy situation 𝜈*(·) of the game Γ3, coalitional ra-
tionality as well as Pareto maximality compared to the other coalitionally rational
situations have been established. Therefore, from Definition 2, the mixed-strategy
situation 𝜈*(·) is coalitionally rational in the mixed extension of the game Γ3 and the
pair (𝜈*,𝑓(𝜈*)) forms a coalitional equilibrium in mixed strategies for Γ3.

Conclusion. In this paper we have made the following new contributions to
cooperative games theory .

First, the concept of coalitional equilibrium (CE) that takes into account interests
of any coalition has been introduced.

Second, a practical method of finding CE has been presented, which can be re-
duced to the determination of a minimax strategy for a special Germeier convolution
that can be built using players’ outcome functions.

Third, the existence of CE in mixed strategies under “usual” for mathematical
programming conditions (continuity of the outcome functions and compactness of the
set of strategies) has been proven.

We find that the following new qualitative results of the present article are signif-
icant as well:

1. the results can be extended to cooperative games of any number of participants
(over three);

2. CE “guarantees” the stability of coalitional structures against deviation of any
coalitions;

3. CE is applicable, even if the game’s coalitional structure change throughout
the game or even if the coalitional structures remains unchanged;

4. CE can be used for forming stable unions of players;
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and these by far do not exhaust all advantages of CE!
But there is another advantage that we find important to note.
To this day, in the theory of cooperative games, the conditions of individual or

collective rationality have been stressed. Individual interests of players are matched
by the concept of Nash equilibrium with its “egoistic” character (“to each his own”);
mutual support in games is matched by the concept of Berge equilibrium with its
“altruism” (“help everyone and forget about your own interests”). However, such
“oblivion” is not characteristic for the human nature of the players. This is overcome
by the coalitional rationality.

Indeed, in terms of coalitional rationality, player 1, minding his own interests and
being a part of the coalition {1,2} within the coalitional structure P2 helps player 2
(element of Berge equilibrium), while being a part of the coalition {1,3} within the
coalitional structureP3 supports player 3, but, as we mentioned “not forgetting about
himselve”. The same statement is valid for the other players. Therefore, coalitional
rationality fills the gap between the Nash (NE) and Berge (BE) equilibriums, adding
“care about the others” to NE and “care about themselves” to BE.

In this article, the authors see the idea of the Golden rule: one should treat others
as one would like others to treat oneself. In the definition of rational equilibrium in
the present article the “others” for each players are the members of the coalition the
player takes part in.
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Жуковський В. I., Ларбанi М.
Альянс в iграх трьох осiб

Резюме

В цiй роботi ми пропонуємо нову концепцiю оптимального розв’язку (яку ми називаємо
«коалiцiйною рiвновагою»), побудовану на iдеях рiвноваги за Нешем та за Берже. Ми
використовуємо поняття оптимального розв’язку, в якому виграш коалiцiї, що вiдхи-
ляється, не може зростати. Пiсля цього за допомогою згортки Гермейера знаходяться
достатнi умови iснування коалiцiйної рiвноваги. Згортка перетворює задачу знаходже-
ння коалiцiйної рiвноваги в пошук сiдлової точки особливої антагонiстичної гри, яка
може буди побудована на пiдставi математичної моделi вихiдної гри. В якостi при-
кладу ми даємо доведення iснування коалiцiйної рiвноваги в змiшаних стратегiях, за
«регулярних» обмежень математичного програмування: неперервностi функцiй вигра-
шу гравцiв та компактностi множин стратегiй. Ми обмежуємось випадком гри трьох
осiб в цiй роботi, щоб уникнути складних позначень та обчислень. Однак застосування
запропонованного методу для iгр з бiльш нiж трьома гравцями може бути багатообiця-
ючим при розв’язаннi задач побудови стiйких коалцiй.
Ключовi слова: максимiн, максимум за Парето, макисмум за Слейтером, коалiцiйна
рацiональнiсть, результант Гермейера, змiшанi стратегiї .

Жуковский В. И., Ларбани М.
Альянс в играх трех лиц

Резюме

В этой работе мы предлагаем новую концепцию оптимального решения (которую мы
называем «коалиционным равновесием»), основанную на идеях равновесия по Нэшу
и по Берже. Мы используем понятие оптимального решения, в котором выигрыш от-
клоняющейся коалиции не может возрастать. Затем, используя свертку Гермейера, на-
ходятся достаточные условия существования коалиционного равновесия. Свертка пре-
вращает задачу нахождения коалиционного равновесия в поиск седловой точки осо-
бой антагонистической игры, которая может быть эффективно построена на основании
математической модели исходной игры. В качестве примера мы даем доказательство
существования коалиционного равновесия в смешанных стратегиях при «регулярных»
ограничениях математического программирования: функции выигрыша игроков пред-
полагаются непрерывными, а множества стратегий компактными. Мы ограничиваемся
в этой работе случаем игры трех лиц, чтобы избежать сложных обозначений и вычис-
лений. Однако применение предложенного метода для игр с более чем тремя игроками
может быть многообещающим при решении задач построения устойчивых коалиций.
Ключевые слова: максимин, максимум по Парето, максимум по Слейтеру, коалици-
онная рациональность, результант Гермейера, смешанные стратегии .


