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In the present paper, we suggest a new concept of an optimal solution (that we call “coali-
tional equilibrium”) based on the concepts of Nash and Berge equilibria. We apply the
concept of an optimal solution where the outcome of a deviant coalition cannot increase.
Then we determine sufficient conditions of existence of a coalitional equilibrium using the
Germeier convolution. The convolution transforms the problem of determining a coalitional
equilibrium into finding a saddle point of a special antagonistic game that can be effectively
constructed based on the mathematical model of the initiall game. As an example of applica-
tion, we suggest the proof of existence of a coalitional equilibrium in mixed strategies under
“regular” mathematical programming limitations: continuity of players’ outcome functions
and compactness of sets of strategies. This work is intentionally limited to three persons
to avoid cumbersome notations and calculations, even though application of the suggested
method to games with more than three players is promising for solving problems of creating
stable coalitions.
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INTRODUCTION. In a three-person game, seven coalitions for joint decision making
and five coalitional structures (partitions of all players into non-intersecting coalitions)
are possible. Over half a century ago, in 1949, twenty-one-years-old PhD student of
Princeton University, John Forbes Nash, suggested in his thesis a concept of “optimal
solution” for a coalitional structure consisting of one player each that he called “equi-
librium” and, following Borel and von Neumann, he proved the existence of such a
solution in mixed strategies.

The concept of equilibrium is based on the stability of a situation considered as an
optimal solution against deviation of any player (not necessarily only one). Stability
lies in that the deviant’s outcome cannot increase. This concept of optimality, later
called “Nash equilibrium”, later found use in economics, sociology, military sciences
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and many other areas. In 45 years, in 1994, Nash, in a common effort with White
House employees John Harsanyi and Reichard Selten won the Nobel Prize “for fun-
damental analysis of equillibria in noncooperative game theory”. Within 20 years,
Nash developed the foundation of the scientific method that played a great role in the
development of world economy.

A different case of a coalitional structure in which all players unite to create a
single coalition became the subject of study of multicriteria optimization, founded
in 1909 by the Italian economist and sociologist Vilfredo Pareto. Here, the idea
is again centered on stability: deviation from an optimal solution causes decrease
of one or several criteria. The mathematical theory of multicriteria optimization
(multiobjective optimization) developed into a separate modern branch of operational
research and also found use in engineering and economics.

What about the “intermediate” coalitional structures that contain at least two
coalitions with at least one of these including at least two players? How does one
formalize the concept of an optimal solution? The present article is dedicated to this
question.

Consider a three-person game with its mathematical model defined by the ordered
triplet

Iy = ({1.2,3}, {Xi}im1 23, {fi(2) }iz1.23) -

In T3, {1,2,3} is the set of players, each of whom selects his strategy z; € X; C
R™ ¢ = 1,2,3, which results in the situation x = (z1,z2,23) € X = Hle X; C
R™(n = Z?Zl n;). For a given situation x in X, the outcome of each player 7,7 = 1, 2,3
is defined by the value of his outcome functions f;(x). The study of conflicts that
are mathematically represented by the three-person game I's, is usually conducted
from the standard point of view that defines what players’ behavior should be consid-
ered optimal (rational, reasonable). The main concepts of optimality in mathematical
game theory are [1] the intuitive concepts of profitability, stability, fairnes and justice.
The “dominant” in the non-coalitional (non cooperative) games, the concept of Nash
equilibrium [2], [3], the Berge equilibrium [4], the active equilibrium, and the bargain-
ing equilibrium are based on stability. In addition to the mentioned concepts of opti-
mality, there are several other concepts of optimality prevailing in the non-coalitional
game theory. In this class of games, each conflict participant (player) usually pursues
his own aims; moreover, the players cannot form coalitions with other players for
determining their strategies. The counterpart to the described class of games is the
cooperative games [5], in which any unions — coalitions — of players for the purpose of
pursuing their common interests as well as the possibility of unlimited negotiations
between players that result in the selection and application of a common situation; of
course, it is implied that “pacta sunt servanda” (agreements must be commited to).
The specific concepts of individual | [5], p.117] and collective or group [ [5], p.125] ra-
tionality are esential for optimality in cooperative game theory. Individual rationality
lies in that each player’s outcome is not less than his guaranteed outcome that he can
“guarantee” by acting independently (applying his maximin strategy). Collective ra-
tionality involves a vector maximum solution such as Pareto, weak pareto, Jeoffrion,
Borwein, etc. optimal situations obtained when all players form one coalition.

The present article heavily relies on the concept of a coalitional structure of a game
(partitioning players into pairwise disjoint subsets). For the three-person game I's,
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five coalition structures are possible: P1 = {{1},{2},{3}}, B2 = {{1,2},{3}}, B3 =
{{173}7 {2}}a Pa = {{1}7 {273}}7
PBs = {1,2,3}. Here, P corresponds to the non-coalitional nature of a game and
Bs corresponds to the coalitional nature of a game. The mentioned conditions of
individual rationality can be formulated for the coalitional structure ;. We will use
the following notations: Vi € {1,2,3}, —i = {{1,2,3}\{é}}, i.e. fori =1 — —i = {2,3},
for i =2 — —i = {1,3}, and, finally, for i =3 — —i = {1,2}.

Then the condition of individual rationality for a situation x = (z1,x2,z3) € X
means that

fio = wmea))(( N I}gﬁf fz(xux ) = I7Hg§7 f’L( —i) = fz(u’C?,Igl) < fz(x)a 1= 172733

(1)

i.e. the application of the maximin strateges x;,i = 1,2,3 implies the following
inequalities:

< filw), i=123. (2)

We denote by X© the set of individually rational situations of the game I's. For
the coalitional structure 05 of the game I's: within the set of situations X° C X
a situation 2P € X° C X is Pareto mazimal in the three-criteria problem I'yo =
(X9 {fi(z)}iz1,2,3) if Vo € X the system of inequalities f;(z) > fi(a?),i =1,2,3, of
which at least one is strict, is incompatible. According to Karlin lemma [ [6], p.71], if

Zfi(ﬂ?p) = maXZfi(l’), (3)

then the situation xP is Pareto maximal in the problem I xo.

MAIN RESULTS

1. Conditions of Coalitional Rationality We will formalize the conditions of
coalitional rationality for the coalitional structures 2, B3 and B4. For this purpose,
we will use the suitable combination of the concepts of Berge and Nash equilibria.

For the coalitional structure 5, the coalitional rationality requires the satisfac-
tion of four inequalities:

filal,xs,x3) < fr(z™) Vaz € X, (4a)
fo(z7,25,x3) < fa(z™) Vo € Xg, (4b)
fi(z1,@e,25) < fi(z™) Vo e X; (j=1,2), (4c)
fa(z1,@2,23) < fa(z™) Va; € X; (j=1,2); (4d)
for Pa:
fi(zr,@y,ms) < fi(a®) Vap € Xy (k=13), (5a)
fa(xy,x5,23) < fs(z®) Vap € Xk (k=1,3), (5b)

fl(l'l,.’EQ,.’EB) fl( ) ng S XQ, (50)
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fa(@T,2,23) < f3(2") Vao € Xo; (5d)
and, finally, for P:
fo(zr,25,2%) < fa(z™) Vi € X, (6a)
fa(@1,23,23) < f3(2") Vi € Xy, (6b)
fa(a],xa,x3) < fa(z™) Va; € X; (I=2,3), (6¢)
f3(z,m2,23) < fa(x™) Va € X; (1=2,3). (6d)

A situation z* € X that satisfies all the twelve limitations (4a)—(6d) is called
coalitionally rational for the game I's. The set of coalitionally rationall situations of
the game I's is denoted by X*; obviously, X* C X.

In the process of definition of an optimal solution of the game I'3, we will use only
6 of the above 13 inequalities (2) and (4a)—(6d), as the other 6 directly follow from
the former 6 inequalities.

This reduction in the number of coalitional rationality conditions is justified iby
the following two Lemmas.

Lemma 1. If (4¢), (6¢c), and (6d) are satisfied for a sitaution x*, then the fol-
lowing statement holds:

fi(z") = fo —rnziixrnlnfz(x“x i) = mlnfl(z r;) ,i=123.

where 9 is defined in (1) fori=1,2,3.
Proof. Indeed, according to (4c),
[i(@") 2 filzr,meas) Vo € X5 (7 =1.2).

When applying first player’s strategy x; = 2 (defined in (1) for i = 1), from the
previous inequality we get

fi(@®) = fr(al we.a3) > Iin fl(xuxz,ﬂ?:a) = max min f,(z1,75,73) = .
1 2,L3

Analogously, from (6¢) follows
fa(a®) 2 fo(al,w2,w3) Vao € Xz, w3 € Xy;
For 2o = 29, (defined in (1) for i = 2)

fo(a®) 2 fo(a} @9 .3) > mln fo(21,29,23) = Hianllxn fo(@1,20,23) = f3.
1,3 2 1,43

And finally, according to (6d), setting z3 = 9, we get

f3(z*) = fa(af,20,23) > min f3(@1,m2,23) = f5.
1,42
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Lemma 2. The following implications are true:

(5a) = (4a), (4c) = (5¢), (4d) = (6a), (6¢) = (4b), (5b) = (6b), (6d) = (5d).

Remark 1. From Lemmas 1 and 2, it immediately follows that it is sufficient to
use siz inequalities, namely (5a), (4c), (4d), (6¢), (5b) and (6d), instead of all 13

inequalities in determining the optimal solution of the game I's.

Consequently, we arrive to the following concept of the optimal solution of the
game I'3; from now on, we use the notation f = (f1,fa,f3) € R3.

Definition 1. We will call the pair (z*, f(z*)) € X x R3 coalitional equilibrium
for the game T3, if the following conditions hold:
1. The six inequalities:

max fj($1,l‘2,l‘§) = f](l‘*) (.7 = 172)7

T1,T2

max fi(r1,23,23) = fe(z*) (k=13), (7)
T1,T3

max fi(#} 2.25) = fir") (1= 23);

2. The situation z* € X 1is Pareto mazimal within the set of coalitionallly
rational situations X* of the game T's, i.e. VYx € X* the system of inequalities
filx) = fi(z*) (i =1,2,3), of which at least one is strict, is incompatible.

Remark 2. The pair consisting of the situation x* and corresponding vector
of outcomes f(x*) = (f1(x*),f2(z*),f3(x*)), is an appropriate concept of optimal
solution for the game I's as the existence of the pair (z*, f(z*)) immediately answers
the following fundamental questions of the mathematical game theory: a) How the
players should behave in the game T3 in terms of strategy selection? and b) what
will they “obtain” as a result? Answer: select their strategies x} from the situation
¥ = (z7,2%,2%) and the components of the vector f(xz*) = (f1(x*),f2(z*),fs(z*)) are
the outcomes they get, respectively, after inplementing the situation x* = (x7,25,23)

Remark 3. We will list the advantages of the suggested coalitional equilibrium
solution of the game T's.

First, according to Lemma 1, the application of x* ensures the satisfaction of
conditions of individual rationality: each player “obtains” an outcome not less than
what he can “guarantee” by acting independently using his own mazximin strategy.

Second, the situation x* “leads” all the players to the “greatest” strategies (Pareto
maximal relative to other coalitionall rational situations of the game T'3). This fact
appears to us as an analogue of the collective rationality of the mathematical theory
of cooperative games.

Third, satifsation of requirements (4a)—(6d) means that, for example, for the first
player, the dual-purpose distribution of his resources, namely, not forgetting about
their interests:

first, player 1 aims to provide mazximal assistance to the player 2 in the coalition
(union) {1,2 } as a member of the coalition structure PBo (requirements (4c) and (4d);
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second, player 1 helps player 3 as a member of the coalition {1,3} of thecoalition
structure B3 (requirements (5a) and (5b)). Formalization of these two requirements
in the first and second lines of (7) appears to us as a modification of the idea of a Nash
equilibrium concept version features two-criteria scoring players; the third line of (7)
can already be viewed as a realization of the idea of Berge equilibrium for the same
two-criteria case. The second and third players’ behavior can be interpreted similarly.

Finally, the property of coalitional rationality is also based on the principle of
stability since, thanks to (7), deviation from x* of any coalition (of one or two players)
cannot lead to “increase” of outcomes of the members of the deviant coalition in the
game I's (compared to fi(z*) (i =1,2,3).

Remark 4. After the optimal solution has been defined, mathematical game the-
ory recommends answering the following two questions:

1) Does such a solution exist?

2) how does one find it?
The followingl part of the article is dedicated to answering these questions. We will
determine sufficient conditions of coalitional equilibrium (section “Sufficient condi-
tions”) and prove its existence in mized strategies under “common” for the game
theory limitations (section “Theorem of existence in mized startegies”)

2. Sufficient Conditions We will now proceed to the result that we find “nec
(non) plus ultra” (Latin nothing above that) of the present article.

We will employ two n-vectors z = (x1,29,23) € X C R" (n = Zle n;) and
z = (z1,22,23) € X as well as the following seven seven scalar functions:

p1(z,2) = fi(z1,22,23) — f1(2),
p2(2,2) = fa(21,22,23) — fa(2),
p3(2,2) = fi(21,25,23) — fi(2),
pa(x,2) = f3(w1,25,23) — f3(2),
p5(.2) = folaiaaas) — fol2), ®)
ve(2,2) = f3(27,22,23) — f3(2),
3 3
pr(z,2) =Y filz) = > fil2),
=1 =1

and using players’ outcome functions in the game I's, we introduce the Germeier
convolution of these seven functions (8)

pla.2) = max_ou(,2), ©)

geeny

defined in X x (Z = X) C R?", where X = H?Zl X is the set of situations of the
game I's.

A saddle point (T, 2*) € X x Z of the scalar function ¢(z,z) (from (8), (9)) in the
antagonistic(zero-sum two-person) game

= <X7Z = XaSD(fEaZ» (10)
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is defined by the chain of inequalities

p(@,2) < p(T) < p(@z) VreX, zeX, (11)
where z* € X* is the maximin strategy, i.e.
max min ¢(z,z) = min ¢(x,2%).
zeX zeX zeX

Lemma 3. If in the game T'“ there is a saddle point (T,z*), then the minimax
strateqy z* € X of the game I'® is a coalitional equilibrium of the initial game T's.

Proof By assuming that z = 7 in (11), from (8) we obtain that ¢(Z,7) = 0, as
all p(z,7) = 0 (k = 1,...,7). Then, in accordance with (11), (from transitivity) it
follows that
o(x,2") = max{fi(z1,22,25) — f1(2"), fa(@1.22,235) — f2(2"), fi(@1.23,23) — f1(27),

f3(@1,23,23) — f3(27), fa(21,@2,23) — fa(27), f3(21,@2,23) — f1(27),

3
> filwrwa,rs) = Y fil21,25,25)} <O
i=1

i=1

for Va; € X; (1 = 1,2,3). This implies the seven following inequalities:
fj(l‘1,$2,2’3) X fj( ) ij € Xj (] = 1,2),
fr(@1,23,23) < fe(2") Var € X (k=1.3),
fl(zl ’m2’$3) < fl( ) Va, € X (l = 2’3)7 (12)

w

Zfr 21,39,13) < Y fr(2%) V= (z1,22,03) € X* C X.

r=1

The first three inequalities in (12) mean that the situation z* € X is (because of
these inequalities and (7)) coalitionally rational in the game I's. The last inequality
in (12) and the inclusion X* C X “guarantee” [ [6], p. 71] the Pareto maximality of
the situation z* in the three-criteria problem I' x- = (X*, {fi(2)}i=1,2,3)-

Remark 5. From Lemma 3, we obtain the following constructive method of find-
ing a coalitional equilibrium of the game I's:

first, build, using (8) and (9), the function ¢(x,z),

second, find a saddle point (T,z*) of the function p(x,z) (satifsfying the chain of
inequalities from (11)),

third, find the values of the three functions f;(z*) (i = 1,2,3).

Then the pair (z*,f(2*)) = (f1(z*),f2(2%),f3(2*)) € X x R?® forms a coalitional
equilibrium of the game T'3.

In the following section, we will use the following lemma.

Lemma 4. If N +1 scalar functions p;(z,z) (j =1,...,N + 1) are continuous in
X X Z and the sets X,Z € comp(R™) (are compact), then the function

ploz) = max  ¢;(z2) (13)

is also continuous on X X Z.
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The proof of an even more general result can be found in many textbooks on
operational research, for example, in [ [7], p. 54], it even appeared in textbooks on
convex analysis [ [8], p. 146].

3. Theorem of Existence in Mixed Strategies

3.1 Mixed Strategy Situations and Mixed Extension of the Game We
will present the mixed strategy extension of the game I's that includes mixed startegy
situations and mathematical expectation of the outcome functions.

We will analyze the three-person game I's, assuming continuity of f;(z) on the
product of compacts X = H?:1 X;. In each compact X; C R™ (i = 1,2,3) we will
consider the Borel o-algebra B(X;) — set of subsets of X; such that X; € B(Xj;),
where B(X;) is continuous relative to the operations of complement and addition of a
countable number of sets from B(X;); moreover, B(X;) is the minimal o-algebra that
contains all completed subsets of the compact X;.

When there are no situations z* in the class of pure strategies x; € X; (i = 1,2,3)
that satisfy requirements 1 and 2 of Definition 1, following the approach of Borel [9],
Von Neumann [10], Nash [3] and their followers, we need to enlarge the set X; of pure
strategies x; to mixed ones. Then we will establish the existence of the coaltional
equilibrium (analog of Definition 1) in the mixed strategy situations game formalized
using mixed strategy situations of the game I's.

Thus we will build Borel g-algebras B(X;) based on each compact X; (i = 1,2,3)
and the Borel o-algebra B(X) for the set of situations X =[],y X; assuming that
B(X) contains all Cartesian products of Borel o-algebras B(X;) (i = 1,2,3).

According to mathematical game theory, we will associate a mized strategy v;(-)
of the player i to a probability measure in the compact X;. By definition [ [11], p.
271] and notations from [ [12], p. 284], a probablilty measure is a non-negative scalar
function v;(+) defined on the Borel o-algebra B(X;) of subsets of the compact X; C R™
satisfying the following two conditions:

1) v <U Q?) = Uu (QS)) for any sequence {Q,(f)}?;l of pairwise disjoint
k k
elements from B(X;) (property of countable additivity of the function v;(-));

2) v;(X;) = 1 (property of normality) and thus v;(Q®) < 1, VQ® € B(X;).

We will denote the set of mixed strategies of player i (: = 1,2,3) as {v;}.

We will also note that the product measures v(dz) = vyi(dxi)va(des)vs(des),
in accordance with the known definitions from [ [11], p. 370] (and notations from
[ [12], p. 123]) are probability measures in the set of situations X. The set of these
probability measures (situations) we will denote by {v}. Note once more that during
the process of building of the product measure v(dz) as the o-algebra of the subsets
of the set X1 x Xo x X3 = X, the minimal o-algebra B(X) containing all Cartesian
products QM) x Q) x Q) where Q¥ € B(X;) (i = 1,2,3) is selected. From the
known properties of probabilistic measures [ [14], p. 288; [ [11], p. 254] follows that
the sets of all possible measures v;(dx;) (i = 1,2,3) and v(dx) are weakly closed and
weakly compact in itself [ [11], p. 212, 254; [13], p. 48, 49]. For {v}, for example, it
means that for any infinite sequence {v*)} (k = 1,2,...) one can select a subsequence
{3} (j =1,2,...) that will weakly converge to v(9(-) € {v}. That is to say, for any
continuous in X function ¢ (x) the following statement holds:
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fim [ ()™ (dz) = /X D) ® (da)

j—oo Jx
and v(©) € {v}. Given the continuity of ¥(z), integrals [+ (z)v(dz) (expectations)
b's
are defined using the Fubini theorem
lim Y(x)v(dx) :/ / Y(x)vs(des)va(des)vr (dxy),
J=oo Jx X1 J X2 J X5

where the order of integrations can be altered.
Now we introduce the mized extension of the game I's based on its pure strategies

<{1,2,3}, (ibimsas {1 = [ fi[w1u<dm>}i=17273>, (14)

where, as in '3, {1,2,3} is the set of players, but {v;} is now the set of mixed strategies
v;(+) of player i; in the game I'3 each player selects his mixed strategy v;(-) € {v; };
the expectation (outcome function) of player i is defined on the set of mixed strategy
situations {v} by:

filv) = /Xfl(x)u(da:) (1 =1,2,3).

For the game (14) we will define an analog of the concept of coalitional equilibrium
situation X*.

Definition 2. A mized-strategy situation v*(-) € {v} is called coalitional equi-
librium of the mized extension (14) (or coalitional equilibrium in mized strategies for
the game I's) if

first, the situation v*(-) is coalitionally rational for the game (14), i.e.,

max )-fj(ylvy%l/;) = fj(y*) (] = 1a2)7

vi()va(-

max fr(1,v5,v3) = fr(v*) (k= 1,3), (15)
vi()vs(:)

max fi(vy,ve,v3) = fi(v") (j = 2,3);
va()vs(-)

(We will denote the sets of coalitional equilibria of the game (14) by {v*});
second, v*(+) is Pareto mazximal in the three-criteria problem

{r hAfi(v)}iz1,2,3)

i.e. for all v(-) € {v*}, the system of inequalities
fl(V) >f7,(y*) (Z: 17273)a
of which at least one is strict, is incompatible;

The sufficient condition of Pareto maximality is obvious; it is the essence of the
following remark.
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Remark 6. Mized situation v*(-) € {v} is Pareto mazimal in T, = ({v*},
{fi(v)}i=1,2,3) if
3 3
max Zfz(l/) = Zfz(y*)
vOet i i=1

3.2 Preliminaries In this section we provide some prelimary results.

Lemma 5. Suppose in the game I's the sets X; are compact, the outcome func-
tions f;(x) are continuous on X = X1 x Xo X X3 and the set of coalitionally equilibrial
mized-strategqy situations {v*} (satisfying (15)) is not empty.

Then {v*} is weakly compact in itself subset of the set of situations {v} of the
game (14) (in mized strategies).

Proof. To establish the weak compactness in itself of the set {v*}, we will select
an arbitrary scalar continuous function ¢ (x) with domain the compact set X, and an
infinite sequence of situations

DO et (k=12 (16)

of the game (14) in mixed strategies. From (16) (and therefore from {v*} C {v})
follows {v®(-)} C {v}. As noted above, the set {v} is weakly compact in itself,
therefore the subsequence {v(¥)(-)} and the measure v(°)(-) € {v} such that

lim ¢( I/(k) dx) / U(x (0 (dx).

]*)OO

exist. We will then apply the regular method of proving such statements (as in,
for example, [ [15], p. 86]).

Lemma 6. Compactness (closedness and boundedness) in the criteria space R?

of the set
= J 1

v(-)ev*

where, as we recall, the vector f(x) = (f1(x),f2(x),f3(x)), can be proven analogously.

Lemma 7. If in game the (14) the sets X; € comp(R™) and f;(-),i = 1,2,3 are
continuous on X, then for the function

o(z,2) = max7g0,,(x,z) (17)

yeeey

the following inequality is correct:

r=1,..., =1,..,7

max7/XXX er(@,2)p(dz)v(dz) </Xxxrmax or(x,2)p(dz)v(dz) (18)

for all u(-) € {v}, v(-) € {v}; here, we recall that the scalar functions p.(x,z) are
defined in (8), (9).
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Proof. Indeed, from (17), for all z,z € X, follow the seven inequalities

prle2) < max_plrz) (r=1,.7).
Jj=1,...,

After integration of both parts of these inequalities with an arbitrary product
measure p(dx)v(dz) as the measure being integrated, we obtain

prlpr) = [ ezl < [ maxey (e ouldeu(a:)
for all pu(-) € {v}, v(-) € {v} and each r = 1,...,7. Therefore,
o) = max [ g @aulanni) <
<[ max g(naudan(dz) Vi) € (he() € (0)
which proves (18).

Remark 7. In fact, (18) is a generalization of the well-known property of the
mazximization operation: maximum of a sum cannot be greater than the sum of the
Marimums.

3.3 Existence Theorem We will provide the main result of this article: the
existence of a mixed strategy coalitional equilibrium situation in the game I's has
been proven.

Theorem 1. If in the game I's the sets X; € comp(R™) and f;(-)i = {1,2,3} are
continuous on X, then the game has a coalitional equilibriuml mized-strategy situation.

Proof. Consider the auxiliary antagonistic game introduced in (10)

= ({12} {X,Z = X}, p(2,2)) .

In the game I'*, the set X of strategies x of the first player (maximizing ¢(z,2)).
A saddle point (T,z*) € X x X of the game I'® satisfies, by definition, the following
chain of inequalities for all x € X and z € X

o(x,2") < o(T,2") < p(T,2).

Now we will associate to I'® its mixed extension T = ({1,2}, {u}, {v'}, ¢(1,v)), where
{v} is the set of mixed strategies v(:) of the second player, and {u} = {v} is the set
of mixed strategies u(-) of the first player, whose outcome function (expectation) are
defined by

() = /X plamn(dn)u(d),

A saddle point (%, v*) defined by the inequalities

o) < o(ul ) < o(u’ ) (19)
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for all u(-) € {v}, v(-) € {v} will also be a solution of the game I'* (mixed extension
of T'¥).

This pair (u°,v*) is called a mized-strategy solution of T'®.

In 1952, Gliksberg [16] established the theorem of existence of a Nash equilibrium
situation in a non-coalitional game of N > 2 persons in mixed strategies, from which
we deduce the statement for its particular case — antagonistic game I'*: suppose that
in the game I'“ the set X C R" is non-empty and compact and the outcome function
of the first player p(z,z) is continuous in X x X (we use the continuity of ¢(z,2) in
Lemma 3). Then for the game I'®, there exists a solution (u%,v*) as defined in (19),
i.e. there exists a mixed-strategy saddle point.

Given (18), the inequalities (19) takes the following form:

/ max_;(z,z)pu(dr)r*(dz) g/ max_p;(x,2)u’(dz)v*(dz) <
Xxx I=b7 Xxx J=L7

< / max_p;(x,2)u’(dz)v(dz)
Xxx J=17

for all u(-) € {v}, v(-) € {v}. Assuming in
o(ulw) = / ‘max_p;j(z,2)u’(dr)v(dz)
XxX J=17

the measure v;(dz;) = p?(dz;) (i € N) and then v(dz) = pu°(dz). Given (18), we
obtain that ¢(u®,u) = 0. Analogously follows the equality ¢(v*,v*) = 0 and then
from (19) we get

p(u’ ) =0 (20)
From ¢(u°,u°) = 0 and the chain of preceding inequalities (using transitivity), we
come to

P = [ max gy(nuldo (@) <0 Vil € o),

« X Jj=1,...,7

In agreement with the Lemma 7, we have

02/ max_@;(z,2)p(dz)r*(dz) > max / w;(x,z)p(dz)v*(dz)
X x d=LnT =1 Jxwx

Therefore, for all j = 1,...,7, we have

| eeamtn @) <0 vl € (o),
XxX

There are two cases.
First case (j = 1,...,6). Here, in accordance with (20), (18) and normality of
v;(+), we obtain (see (8))

0> /XxX (tpj(m,Z)M(dI)V*<dZ) = / (fj(Zl,ZQ,zg) — fj(z))/i(dl')l/*(dz) _

XxX
:/ fj(zl,@,z?))u(dx)V*(dZ)*/ fj(Z)V*(dZ)/ p(da) = f(p1spews) — f3(0°)
XxX X X

Vii() € {v} (G =1,2),
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Analogously,

0> / or(x,2)p(de)v*(dz) = fulpa,vsmus) — (™) Yupe() € {v} (k= 1,3)
XxX

0> / oz, 2)pd)v*(dz) = fi(vipa.ps) — i(v") V() € {n} (1=23).
XxX

According to Definition 2, v*(+) is a coalitionally rational situation in mixed strategies
for the game I's.

Second case (j = 7) Once again, in accordance with (20), (18) and normality of
v(-), we obtain

7

/XXX [Zfr Z ()1 p(da)v* (dz) /Zfr /Xu*(dz)—

/dx/Zfr (dZ)ngr Zfr ) e v}

Then, after considering Remark 7, we see that the mixed-strategy situation v*(-) €
{v} of the game I's is Pareto maximal in the problem

= {v' I {filv)}i=1,23) -

Therefore, for the mixed-strategy situation v*(-) of the game TI's, coalitional ra-
tionality as well as Pareto maximality compared to the other coalitionally rational
situations have been established. Therefore, from Definition 2, the mixed-strategy
situation v*(-) is coalitionally rational in the mixed extension of the game I'3 and the
pair (v*,f(v*)) forms a coalitional equilibrium in mixed strategies for I's.

CONCLUSION. In this paper we have made the following new contributions to
cooperative games theory .

First, the concept of coalitional equilibrium (CE) that takes into account interests
of any coalition has been introduced.

Second, a practical method of finding CE has been presented, which can be re-
duced to the determination of a minimax strategy for a special Germeier convolution
that can be built using players’ outcome functions.

Third, the existence of CE in mixed strategies under “usual” for mathematical
programming conditions (continuity of the outcome functions and compactness of the
set of strategies) has been proven.

We find that the following new qualitative results of the present article are signif-
icant as well:

1. the results can be extended to cooperative games of any number of participants
(over three);

2. CE “guarantees” the stability of coalitional structures against deviation of any
coalitions;

3. CE is applicable, even if the game’s coalitional structure change throughout
the game or even if the coalitional structures remains unchanged;

4. CE can be used for forming stable unions of players;
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and these by far do not exhaust all advantages of CE!

But there is another advantage that we find important to note.

To this day, in the theory of cooperative games, the conditions of individual or
collective rationality have been stressed. Individual interests of players are matched
by the concept of Nash equilibrium with its “egoistic” character (“to each his own”);
mutual support in games is matched by the concept of Berge equilibrium with its
“altruism” (“help everyone and forget about your own interests”). However, such
“oblivion” is not characteristic for the human nature of the players. This is overcome
by the coalitional rationality.

Indeed, in terms of coalitional rationality, player 1, minding his own interests and
being a part of the coalition {1,2} within the coalitional structure 9o helps player 2
(element of Berge equilibrium), while being a part of the coalition {1,3} within the
coalitional structure 35 supports player 3, but, as we mentioned “not forgetting about
himselve”. The same statement is valid for the other players. Therefore, coalitional
rationality fills the gap between the Nash (NE) and Berge (BE) equilibriums, adding
“care about the others” to NE and “care about themselves” to BE.

In this article, the authors see the idea of the Golden rule: one should treat others
as one would like others to treat oneself. In the definition of rational equilibrium in
the present article the “others” for each players are the members of the coalition the
player takes part in.
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Kyroscoxuti B. 1., Jlapbani M.
AJIbSIHC B I'PAX TPbOX OCIB

Pesrome

B wiit po60Ti MU IPOIIOHYEMO HOBY KOHIEIIIIIO OIITUMAJIBHOIO PO3B’sI3KY (SIKY MM HA3UBAEMO
«KOAJIIIHOIO PIBHOBArOM0» ), MoOyI0BaHy Ha inesx piBroBarm 3a Hermem Ta 3a Bepxe. Mu
BUKOPHUCTOBYEMO TOHATTS OINTUMAJILHOIO PO3B’SI3KY, B SIKOMY BHUI'DAIN KOAJIIIT, 10 BiIXu-
JI€ThCs, He MoxKe 3pocraTu. llicisa mporo 3a momomororo 3ropTrku l'epmeiiepa 3HAXOAATHCS
JOCTATHI YMOBU iICHYBaHHSI KOAJIIIHHOT piBHOBArn. 3ropTKa MEPETBOPIOE 331a9y 3HAXOIZKE-
HHsI KOAJIIIHOT piBHOBArM B IIOIIYK CiJJTOBOI TOYKHU OCOOJIMBOI AHTArOHICTHYHOI I'DH, sKa
MOKe Oyau 1mobOy/loBaHa Ha IJICTaBI MaTeMaTUIHOI MOjesi BuxinHol rpu. B skocrti npu-
KJIaJIy MU JAa€MO JTOBEJICHHS iICHYBaHHSI KOAJIIIINHOI pIBHOBAru B 3MIIIAHUX CTPATEridAX, 3a
«PeryiaspHuX» 0OMeKeHb MATEeMATHIHOTO IIPOrpaMyBaHHs: HEIEPEPBHOCTI (DYHKIIIH BUTpa-
[y TPaBIliB Ta KOMIIAKTHOCTI MHOXKWH cTpareriit. Mu oOMe)XyeMOCh BUITAJKOM I'PH TPHOX
oci6 B miit po6oTi, MmO6 YHUKHYTH CK/IAIHAX MMO3HAYEHb Ta obunciienb. OHAK 3aCTOCYBaHHST
3aIPOITIOHOBAHHOIO METO/LY JIJIs irp 3 OLIbIN HiXK TPhbOMa I'PABIAMHU MOXKe OyTH 6araroobirs-
OUYMM TIPHU PO3B’si3aHHI 38129 MOGYI0BU CTIHKUX KOAJIIIINA.

Karouosi caosa:  makcumin, maxcumym 3a Hapemo, maxucmym 3a Caretimepom, Koanriyitina
PAULOHANDHICTL, pe3yavmanm [epmetiepa, 3miwant cmpamezii .

2Kyrosckut B. U., Jlapbaru M.
AJbSIHC B UI'PAX TPEX JINI]

Pesrome

B sroii pabore MBI mpeIaraeM HOBYIO KOHIIENIMIO ONTHUMAJBHOIO penteHusi (KOTOPYIO MbI
HA3BIBAEM <«KOAJIMIOHHBIM DABHOBECHEM>» ), OCHOBAHHYIO Ha MJEAX paBHOBecus 1o Hsmnry
u o Bepke. Mbl ncosib3yemM HOHSITAE ONTUMAJILHOIO PEIIEHUsl, B KOTOPOM BBIUIDBIII OT-
KJIOHSTIONIEHCS KOAJIMINY He MOXKET BO3PaCTaTh. 3aTeM, UCIOJIb3ys cBepTKy ['epmeiiepa, Ha-
XOJISITCsT TOCTATOYHBIE YCJIOBUST CYIIECTBOBaHMUsT KOAJTUIIMOHHOrO paBHOBecusi. CBepTKa Impe-
BpAIaeT 3aa<dy HAXOXKIEHUSI KOAJIUIMOHHOIO PABHOBECHSI B IIOUCK CEIJIOBOM TOYKHU OCO-
001 aHTAarOHUCTUIECKON UIPBI, KOTOPasi MOXKET OBbITh 3(PPEKTUBHO TOCTPOEHA, Ha, OCHOBAHUY
MaTeMaTHIEeCKONW MOJEJIM UCXOJAHON Urpbl. B KadecTBe mpumepa MBI J1aeM J[OKA3aTEIbCTBO
CyIIIeCTBOBAHMS KOAJIMIIMOHHOI'O PABHOBECHS B CMEIIAHHBIX CTPATErUsX HIPHU «PEryJIspPHBIX»
OrPaHUYEHMSIX MaTEMATHIECKOTO ITPOTPaMMUPOBaHUs: (DYHKIIUU BBIUTPHIIA UTPOKOB IIPE/I-
MOJIATAIOTCS HEMTPEPBIBHBIMU, & MHOXKECTBA CTPATErnii KOMIIAKTHBIMU. MBI OrpaHUInBAEMCsT
B 9TOi1 paboTe CIydaeM UTPBI TPEX JIUIL, ITOOBI N30eKATh CIOKHBIX 0D03HAYEHUN U BBIUHC-
stennii. OIHAKO MPUMEHEHME TIPE/JIOKEHHOI0 MeTOa JIJisi UT'p ¢ boJiee YeM TpeMsi UTPOKaMU
MOXKET ObITh MHOTOODEMIAIONINM TP PEIIEHUN 33029 TOCTPOEHUST YCTONIUBBIX KOAJIMIIHA.
Karoueswie caosa: marxcumun, maxcumym no Iapemo, maxcumym no Caetimepy, Koasuyu-
OHHAA PAYUOHANDHOCTD, pe3ysvbmanm [ epmetiepa, cmewartvie cmpame2ul .



