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This paper is concerned with a stochastic Lotka-Volterra food chain model. The existence
of the global solution and the ultimate boundedness of moments of the solutions are proved.
Moreover, we estimate the average in time of the solution and investigate the extinction and
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INTRODUCTION. Since the 1920’s when Vito Volterra employed systems of differ-
ential equations to describe the dynamics of a predator-prey population, there has
been a large amount of mathematical study on population dynamics. One of the
most important type of species interaction in ecology is food chain interaction. The
simplest food chain model is the classical Lotka-Volterra predator-prey

i(t) = z(t)(a — by(t)), (1)
= y(t)(—c + dz(t)),

where z(t) and y(t) represent, respectively, the densities of the prey and the predator
populations; a, b, c and d are positive constants. Besides, in order to describe better
different ecology models, other predator-prey models with various type of functional
responses have been investigated in many papers. Meanwhile, there has been con-
siderable interest in food chain models of n pieces, especially models of three species
(see [1,2,8,9,11,13,14,18,21,22]). For example, we take a three species Lotka-Volterra
food chain model

i(t) = z(t)(A — Bx(t) — Ciy(t)),
y(t) = y(t)(—Dy + Cax(t) — E12(1)), (2)
2(t)(—=D2 + Ey(t)),

where x(t),y(t),z(t) are the densities of the lowest-level prey (X), mid-level species
(Y), and top predator (Z) at time ¢, respectively; A > 0 in the intrinsic growth rate
of X; B > 0 is the coefficient of intra specific competition of X; D; > 0 and Dy > 0
represent the natural death rate of the mid-level predator respectively, C; > 0 and
E; > 0 represent the effect of predation on the lowest-level prey and the mild-level
species; Cs > 0 and FEs represent the efficiency and propagation rate of Y and Z in
the presence of their own preys.
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On another direction, stochastic population models have also been received much
attention recently. In fact, stochastic models are more realistic than deterministic on
since parameters of models are often perturbed environment noise. In [17], the authors
studied the existence and uniqueness of the positive solution of a general stochastic
Lotka-Volterra model. Then, the asymptotic behavior of the positive solution was also
considered in [17] and [6]. Especially, the more detailed study for stochastic predator-
prey models can be found [3,5,7,12,19,20], etc. In [10], the author considered the
persistence of the following stochastic food web model in which the top predator
consumes the lowest-level rather than the mid-level

dz(t) = z(t)(a — bx(t) — cry(t))dt + i:l Vo dW;(t),

dy(t) = y(t)(—di + cox(t) — er2(t))dt + i:1 Vo2 dW;(1), (3)

d(t) = 2(t) (~da + eay(®))dt + g JTAW; (1),

where the 0;; are nonnegative constants and the W;, j = 1,3 are independent scalar
Brownian motion processes. In this paper, we consider (2) with suppose the rate of
growth of each species perturbed by white noise. So that (2) becomes

da(t) = 2(t)(A — Ba(t) — Chy(t))dt + o2 (t)dW (),
dy(t) = y(t)(=Dy + Cox(t) — Ey2(t))dt + o2y(t)dW (1), (4)
dz(t) = z(t)(—D2 + Eqy(t))dt + o32(t)dW (1),

where 01,02 and o3 are real constants. Beside that, [15] discussed a system has
a unique positive solution and its pth moment is bounded. They also established
conditions that the system is persistent in time average and the system is going to
be extinction in probability. It looks more general than our model. How ever, our
results are better than them.

The goal of this paper is to prove the existence and uniqueness of positive solution
to Equation (4). Then we investigate the extinction and persistence of each species
with a slightly condition. A brief description of the organization of this article is
as follows. The article is divided into three sections. In section 2, the existence
and uniqueness of the global solution are proved and the ultimate boundedness of
moments of the solution are given. In section 3, we give conditions for the existence
and persistence of each species.

MAIN RESULTS

1. Global positive solution and moment estimation. Throughout this
paper, we let (Q, F,P) be a probability space and {W(¢)},>0 be a scalar Brownian
motion defined on this probability space. Denote by R% the set {(z,y,2) € R? :
x>0,y >0,z > 0}. Obviously, the coefficients of Equation (4) are locally Lipschitz
continuous but do not satisfy the linear growth condition. However, we have

Theorem 1. For any given initial value (2(0),y(0),2(0)) € R3, there is a unique
global solution to Equation (4) on t > 0 and the solution will remain in R3 almost
surely.
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Proof. Since the coefficient of the Equation (4) are locally Lipschitz continuous,
for any given value (29,90, z0) € R?, there is a unique local solution (z(t),y(t), z(t))
on t € [0;7.], where 7. is the explosion time. The solution is global if 7. = oo a.s.

Putting o = Cngl and § = aElEgl. For each k € N, we define the stopping
time

7 =1inf {t > 0,z(t) + ay(t) + Bz(t) < k™' or z(t) + ay(t) + Bz(t) > k}

with convention inf() = oco. 7 is increasing, so we put 7o, = limp_,oo 7%. Let
V(zy,z) = (x + ay + Bz) — In(z + ay + Bz). Obviously, V(z,y,z) > 0 for all
x>0,y > 0,z > 0. By Ito’s formula,

AV (x(t),y(1),2(t)) = LV (x(t),y(t),2(t))dt

T (a(t) + ay(t) + fa(r) — 1) 722 T o) + Poaz()

2(t) + ay(t) + B=(1)

aw (t),

where,

Ax — Bx? — aDiy — BDyz

LV (x,,2) = (Ax — Bx? — aDyy — BD,z) — P

1 (012 4+ aosy + Bosz 2
2 T+ ay+ Bz

From the formula of LV (x,y,z) we have
LV (x,y,2) < (A+ B)x — Bx? + Dy + Dy + - 5 (0% + 034 03) Vay,z > 0.

It implies that K := SUD (5 ) R LV (z,y,z) < co. Consequently,

EV({L‘(t A Tk)/y(t A Tk),z(t A Tk))
— V((0),9(0),2(0)) + E /O "LV (2(5)y(s).2(5)) ds,
< V(2(0),y(0),2(0)) + E/O " Kds =V (2(0),5(0),2(0)) + KE(t A7i,).  (5)

Suppose 7o, < oo with a positive probability. It implies the existence of two positive
constants € and T > 0 such that P{7o < T} > 2e. Hence, there is kg € N such that
P{r, < T} > € for any k > k.

Putting hy = (k — Ink) A (k=! + Ink), then hy — oo as k — oo and
V(x(tk),y(1k), 2(7%)) = hg. It follows from (5) that,

hie < hiP{m, < T} < ( (T/\Tk),y(T/\7'k),,z(7’/\7';€))7
gK]E(T/\Tk)+V( ( )7 (O)’ ( ))
< KT+ V(2(0),5(0),2(0) Yk > k.

Let & — oo we get a contradiction. This implies that 7., = oo a.s. The proof is
complete.
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Theorem 2. Let (z(t),y(t),z(t)) be a solution to Equation (4) with the initial
value (2(0),y(0),2(0)) € R3. There exist 6, Ky > 0 such that

limsup B ([z(6)]°T + [y(0)]°T" + [2(1)]°T") < K.

t—o0

2, 2, 2 -1
Proof. Let 6 = ([% +1} .max{l,Dil,Diz}) . Consider V(z,y,2) =
(v + ay + B2)?*L. By Ito’s formula,
de VOV ((2(1)y(8), =(t))
= OV LV (w(t) (1), (1)) + (0+ 1OV (2(8),y (1), 2(1)) ) dt

+ (0 + 1)el0+Dot (x(t) +ay(t) + Bz(t))e(aw(t) + aoy(t) + Bosz(t))dW (1), (6)
where,

LV (z,y,2) = (0 +1)(z + ay + B2)°[(Az — Bx? — aDy — BDz)
6

v 2
+ Q(x—l—ay+ﬁz)(01x+aa2y+ﬂ032) }
Since a, 8 > 0, for all (z,y,z) € R3, we have

6
2(z +ay + Bz)

<o(

(012 + aogy + Bosz)? + 0(x + ay + B2)

0‘% + 0‘% + 0§
2

0’% + U% + a§
2

=z+aDyy+ BDsz.

+1)(a¢+ay+ﬁz)

i} (m +aDiy + BDgz)

1
<0|: 1777
Dy Do

+1] max {

Thus, there is a K3 > 0 such that for all (z,y,2) € R

LV (zy,2) + (0 + 1)V (2,y,2)
<O+ 1)(z+ay+B2)° (A+ 1)z — Ba® —aDyy — BDs2z) < Ks. (7)

Let 7 be defined in the proof of Theorem 1. Taking expectations on both sides of
(6) and (7), we obtain,

Ee @ DOCATIY (2t Ai), y(t A o), 2(E A 7))
K3

E (0+1)9(t/\7’k) —1).
6+1)0 (e )

<V (2(0),9(0),2(0)) +

Let k — oo, we get

K3

an 1)9(6(94-1)015 —1),

eUTVUEY (2(t),y(t),2(t)) < V (2(0),5(0),2(0)) +
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equivalently,

EV (x(t),y(t)z(t))

K
<V (2(0),5(0),2(0)) e @10t {23 (] _ o= (0+1)6¢
which implies
K
limsup BV (2(t),5(1),2()) < 7 =: K.

The proof is complete.
The following result is a direct corollary of this theorem.

Corollary 1. Equation (4) is a stochastically ultimately bounded in the sense
that for any € > 0, there is a positive constant H = H(e) such that for any initial
value (2(0),y(0),2(0)) € R3., the solution has the property that

limsup P{z(t) +y(t) + 2(t) > H} <.

t—o00

We now give a estimation for the growth rate of the prey.

Theorem 3. Let (z(t),y(t),z(t)) be a solution to Equation (4) with the initial
value (2(0),y(0),2(0)) € R3. We have

Proof. Let n > 0. In view of It6’s formula,

eMz(t) = z(0) + /Ot e’ ((A +n)x(s) — Bx?(s) — C’ly(s))ds
+ 01 /Ot e"x(s)dW(s). (8)

Note that M(t) = fg e x(s)dW (s) is a real valued continuous local martingale with
quadratic form

<M(t),M(t)>:/0 21522 (s)ds.

For each A\ > 0, it follows from the exponential martingale inequality (see [16]) that

11»{ sup M(t) — Ae ™ (M(t),M(t)) < ) k} <2
u — e , —In < —.
ogtgk A k2

By the well known Borel-Cantelli lemma, there exists an g C  with P(£9) = 1 such
that for any w € o, there exists a ko = ko(w) € N satisfying

nk
M(t) = Ae™™(M(t),M(t)) < %lnk, VO <t <k k> ko
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Since for any 0 < t < k,
t
M) M (1)) < / ¢"32(5)ds.
0

We have . .
n
M(t) < / A 22(s)ds + %m k, VO <t <k, k> ko. 9)
0

For A < %, we put Ky = sup,ep+ {(A+n)z — (B — 01A)2?} < oo. It follows from
(8), (9) that

K kg Ink
eMa(t) < 2(0) + f( " 1)+ %
Obviously, if k > kg and k — 1 < t < k, the following inequality holds,

x(t) e~k K K e"o; Ink
AN G - =2 .
Int ~ In(k— 1) (x(O) " ) =0 T Tx k=1

Let k£ — oo, we get limsup,_, % < eﬂ% Letting n — 0, A — o—Bl, we yield the

desired assertion. '

2. Extinction and persistence. We now give condition for the existence
and persistence of the three species. Let Z(t) be the solution with the initial value
Z(0) = z(0) to equation

du(t) = 2(t) (A — BZ(t))dt + o1 Z(t)dW (¢). (10)

By the comparison theorem for stochastic equation, we have Z(t) > x(t) Vt > 0 a.s.
2
1

If A < G limy 00 Z(t) = 0 a.s. (see [19]) which implies that lim;_,. 2(t) = 0.
Moreover,
Iny(t) 1 2 1 [ t
ny()gnyi(o)fplfai+f/ Coa(s)ds + T (11)
t t 2 "t ), t
: : W) _ : Iny(t) o3 Qi
so it follows from lim; o, —— = 0 a.s. that limsup,_,, —— < —D; — =*. Similarly
we have | 5
lim sup n2(t) < —Dy — ﬁ.
t—o00 2

2
As a result, when A < ”—21, all species are extinct.

If 4, > %% it is known that InZ(¢) has a unique stationary distribution with
the density f.(u) = Cexp ((24 — o})u — %e“). For more details, please see [19].

Moreover, we define
2B

t
tlggof ; Z(s)ds =m, a.s. (12)
Substituting the inequality x(t) < Z(¢) ¥Vt > 0 and (12) into (11) gets that if Com <
2
Dy + %, y(t) — 0 as t — oo with probability 1. It again implies lim;_,« 2(t) = 0 a.s.
By the same way as in the proof of [4, Theorem 2.1], we claim that lnz(t) converges
weakly to f.. In the other case, we have

By the ergodic theorem,
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Theorem 4. Let (z(t),y(t),z(t)) be a solution to Equation (4) with the initial

value (2(0),y(0),2(0)) € R3. Assume that A > %% The following claims hold with
probability 1.

a) liminf;_, lny() < 0. Moreover, if Com > D1+ 02 then

Da+
b) limsup,_,., 1 fo mln{ 2E22 ,0102 (Com — Dy — )},
D+
+7
) lim SUPt 00 n fo = 102 2 ;

2 o3
d) If %(C’gm - Dy — %) > DQ;;{L then limsup,_, . z(t) > 0.

Proof. Assume that there is a 1 C Q, P(Q) > 0 and liminf, % > 0.

Hence, for w € Qq,limy_ o0 fot y(s)ds = oo. It follows from Itd’s formula for Inz(t)
that

Inz(t 2 B [
lim sup nz(t) gAfﬁfliminf?/ z(s)ds
0

t—ro00 t 2 t—oo

G [t W (t
— lim —1/ y(s)ds + lim o? ®) = —o0 a.s.in .
0 t—00 t
Hence lim; o 2(t) = 0 for almost w € €. Combining with (11), we get

lim sup < —Dy — —= for almost w € €.
t—o00 2

This contradiction implies that item a) holds almost surely.
Suppose that there exists a subset s C Q with P(Q3) > 0 such that

E, [* 3
limsup — [ y(s)ds < Dy + 7
t—o0 t 0 2
By It6’s formula
lnz(t) 1
220 220 ¢ B [ s + .

W)

Since .

— 0 as t — oo with probability 1, then for almost we have

Inz(t
w € Qg,limsup&(> < 0.

t—o0

Applying 1t6’s formula again, we derive that for almost w € Qg

Iny(t Cy [ Ey [*
lim inf ny(t) >—-D; — —|— lim —2/ Z(s)ds — lim —1/ z(s)ds
t—00 t 2 t—oo ¢ J, t—o00 0
. Cy [* .
—limsup — [ (Z(s) — z(s))ds (13)
t—o0 t 0

2 ¢
=Cym — Dy — SR Cs lim sup %/ (Z(s) — z(s))ds.
0

2 t—o0
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On the other hand, employing It6’s formula for InZ(¢) — Inz(¢) yields

o InZ(t) — Inx(s) B t

t

. :ff/ (3(s) - 2(s))ds + = [ y(s)ds as.  (14)
t t 0 t 0

which results in

: Lt C . 1 [
limsup — [ (Z(s) — x(s))ds < —- limsup : y(s)ds a.s. (15)
0 0

t—o00 B t—o00

From (13) and (15) imply that for almost w € Qs

1 3 1/t
lim inf ny(t) > Com — Dy — %2 _ 1% lim sup ;/ y(s)ds.
0

t—o00 2 B t— 00

By item a), we get

o2
(C’gm — Dy — ?2) a.s. in  Qs.

t—o00

I B
limsup;/o y(s)ds = G,

This inequality implies item b). It follows from item b) that

2
limsupwzo a.s. if Cgme17%>0.

t—o0

Using (11) we have

Iny(t 2 Cy [*

0 < lim sup ny(t) <—-Dy — 72 + 1imsup—2/ z(s)ds a.s.
t—o0 t 2 t—00 t 0

From this inequality, it is easy to obtain item ¢). We now prove the final claim.

Suppose that there is a Q3 C Q such that P(Q3) > 0 and that lim;_,. 2(t) =0 Vw €

Q3. Similar to the proof of item b) we claim that for almost w € Qg,

1/t B o2
lim sup — s)ds > ———(Com — Dy — =2).
Hoopt/o y(s) 0102( 2 1= 5)

Applying Itd’s formula to In z(¢) we obtain that for almost w € Qg,

In z(t 2 By [* Wt
lim sup &() =—Dy — % + lim sup =2 y(s)ds + 75lim % > 0.
— 00

t—o00 t—o00 0
This contradiction completes the proof.

CoNCLUSION. This paper is concerned with a stochastic Lotka-Volterra food chain
model. The existence of the global solution and the ultimate boundedness of moments
of the solutions are proved. Moreover, we estimate the average in time of the solution
and investigate the extinction and persistence of each species.
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Yan ine Tyons'
JVHAMIKA CTOXACTUYHOI MOJIEJII XAPYOBOT'O JIAHLIIOT'A JIOTKM-BOJIbTEPPU

Pesrome

Pobora npucesueHa BUBYEHHIO CTOXACTUIHOI MOJIEJIi XapIoBOro janiora tuny Jlorku—Bosb-
Teppu. JloBeneHo icHyBaHHS IJI00AJIBHOTO PO3B’A3KY Ta I'PDAHUYHOI 0OMEXKEHOCTI 1oro MOMeH-
TiB. Bijbmr Toro, Mu OTpUMYyEMO OIIHKY YCEPETHEHHOTO 38 YaCOM PO3B’SI3KY Ta JTOCIIKYEMO
YMOBH BHMHUPAHHS Ta BI2KUBAHHs 000X 0ioyorivHnx BHJIB.

Karowosi caosa:  Gpoyniscokull pyz, rapwosul aanyroz, modeav Jlomxu—Bosvmeppu, mo-
deav zudicar—oicepmea, cmoracmuyre dugepenyiasvne PIGHAHHA .

Yan Junv Tyone
JVHAMUKA CTOXACTHUYECKOM MOJEJIU ITUINEBOM LEINOYKU JIOTKU-BOJIbTEPPA

Pesrome

Pabora rocssiena n3y4eHNI0 CTOXaCTUIeCKOM MOIeNIH IIUIIEeBOIt ienouku JIorke-Bosbreppa.
JlokazaHo cyIecTBOBaHME IVI0HAIBEHOTO PEIIEHNsI U IPE/IIbHAs OTPAHNYEHHOCTH €r0 MOMEH-
TOB. Bojiee TOro, MbI moJIy4aeM OILIEHKY YCPETHEHHOIO II0 BPEMEHH PEIIeHUs U UCCIIETyeM
YCJIOBHUS BBIMUDAHUsI U BBIKUBAHUS KaXKJIOTO OMOJIOTMYECKOTO BU/IA.

Karoueswie caosa: 6poynosckoe dsusicerue, nNuwesas uenowka, modeav Jlomxe—Boavmeppa,
MOdead TuWHUK—HCEPMEBa, cmoxacmuyeckoe dupdeperyuarvroe ypasrerue .



