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We study the number of representations n = s1 - - - s, where s; are sonor numbers, i.e. for
every s; there do not exist the natural numbers n and k such that s; = n*, k > 2. The
counting function f(n) of such representation is the multiplicative analogue of the additive
partitions of n. We construct the asymptotic formula for summatory function of f(n) and
investigate the distribution of values of the generalized divisor function L(n) (as the number
of representations n factoring two sonor numbers).
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INTRODUCTION. Let M be a subset of integers with positive density, e. g.

nemM,
n<N

and e(n) — its characteristic function. Multiplicative partition of an integer n > 1 is
a representation of n as any product of numbers from M, greater than 1. Number
of such representations is denoted as f*(n, M) (or simply f*(n) if it is clear what M
is selected). A sign * shows that we mean the multiplicative partition. MacMahon
[8] first studied a distribution of f*(n) at the set M = IN, as multiplicative analog

of Ramanujan partitions. He built an asymptotic formula for a sum > f*(n). Soon
n<x
thereafter Oppenheim ([9], [10]) improved the result of MacMahon, obtaining a rep-

resentation of the summation function > f*(n) as a series on values of a Bessel’s
ne

function of the first kind Ix(z):

o Ti1(2y/1 Viogw
Zf*(n):dekW+O<xfjg>7 (1)
n<a k=0 vlogx (log x) s

where d, are the coefficients of Taylor’s series expansion by the powers of a (s — 1)
of the function %F(s)e_ﬁ7 where F'(s) — generating series of the sequence {f*(n)}.
Then other improvements of the remaining term in the formula (1) followed (see [5],
[11], [7]), as well as various generalizations of a choice of the set M(see [1], [12],
[13], [4]). In [2], an order of the growth of f*(n) has been studied. The authors
demonstrated that there is an infinite sequence of "highly factorable numbers” n, at
which f*(n) takes maximal positive values:
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1 loglog1
ff(n)=n-exp|— 0871708 108 08 Tt +o(1)].
loglogn

In a work of Warlimont[13], various examples of factorizations of integers are
explored (e.g., different M sets).

In this paper, we will study another type of factorization of integers, which wasn’t
included in the list of the types of factorizations in [13].

MAIN RESULTS

1. Statement of the problem. Let n = p{'p5*...p% > 1 and let a =
GSD(ay,as,...,a,.). We say that n is a ”sonor” number (or integer non-power), if
a = 1. The unity (1) apparently is not classifiable as either sonor or integer power.
We will denote the set of sonor numbers as S and integer powers as Q). Because
N=SUQ and SNQ = 0, taking into consideration that amount of integer powers
<zis O(X 1/ 2), the density of S is 1. Also, for convenience, we will use an expanded
set of sonor numbers, S’,

S =8SuU{1}.

Denoting the number of sonors < z as k(z) and number of integer powers as p(z),
we can get

k(z) +p(z) +1 = [z],
and therefore . ) )
k(x) =2 —22 —23 + 0O (:ﬂ“) .

A generating series E(s) for sonor numbers

Z ni —((25) = ((35) + g(s),Ns > 1,

33
nH

where g(s) is regular in a half-plane Jts > = L allows to investigate the function k(x).
Besides that, we can obtain an equality

bz)e! dx = ols) = 1(3‘%5 > 1)
ST |

that is an interesting analogy of a well-known formula

/ lni(s) (Rs > 1),

x(xs —1

relating the function 7(z) and Reimann’s zeta-function. In general, sonor numbers
can be seen as an analogy for prime numbers (with prime numbers being a subset of
sonors).

Further in this paper, we will explore some arithmetical functions associated with
the sequence of sonor numbers.
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Each integer number greater than 1 can be represented as a product of ”expanded”
sonor numbers (if 1 is included into the set of sonor numbers), but this representation
is not unique. For example,

n= pfp% =P1-P1-P2 P2 =P1(P1p§) = pQ(Pﬂﬁ) = (p1-p2) - (p1 - p2)-

Further we will take ”"expanded” S’ as an example of M for the problems of
multiplicative representations. Our attention will be focused on an investigation of
three functions:

fFy= Y1, fim= > 1, dn)= ) L

n=ni--ng, n=ni--Ng, n=ninz,
n;€S’ n;€S’, ni,ma2€S8’
1<ny <---<ng

2. Notation and supporting corollaries. Throughout we will use the follow-
ing notation. The letter p denotes a prime number. We write ged(a,b) = (a,b) for
the greatest common divisor of @ and b. For any t € R we write exp (t) = e'. For
s € C we denote Rs = 0, s =1, s = o +it. ((s) is the Riemann zeta-function.
f(z) = O(g(x)) means |f(z)| < cg(z) for > zo and some absolute constant ¢ > 0.
Here f(x) is the complex function of the real z and g(x) is a positive function of x
for z > xg. f(z) < g(x) means the same as f(z) = O(g(x)). f(x) = o(1) means that
lim, o f(x) = 0.

Now we shall consider some assertions which will be necessary furthermore.

Corollary 7. For [t| > 3 uniformly at o we have

1 if o>=2,
Clo+it) < § log|t] if 1<o<y,
157 log |t if L<o<l,
¢(1+4it) < log [t|.
Corollary 8. For any T > 3 we have
T ) 9
/‘5 (2 —H't) dt < TlogT.
1

Those corollaries are well known.

Let then e(n) be an arbitrary arithmetical function (not necessary a characteris-
tic function of M). We shall assume that e(n) > 0, e(n) < n® for every small e.

ns

Therefore, the series 3 < absolutely converges in the half-plane Rs > 1, and the
1

following equality is true:

f (1) o5 v .
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where f*(n) = 3> e(ny---e(mk), f*(1) = 1.

n=ni--ng

If e(n) = 0 for n ¢ M, then

f*(n) = Z 6(711) . ~-e(nk), f*<1) =1.

n=ni--ng,
1<n;eEM

Let’s denote as fi(n) the number of representation of n as a product of different
elements nq,...,ng, greater than 1, from M, that is

foty= D> elm)--elny).

n=ni--ng,
I<ni<---<ng,
niEM

In this case we have

002 <1 N eT(;L)) _ i f;(s?”b). (3)

If M is the expanded set of sonor numbers (including 1), functions f*(n) and f§(n),
generally speaking, are not multiplicative. The function d(n) defined above as a
number of representations of n as a product of two sonor numbers (including 1 as a
potential co-factor), also is not multiplicative. Indeed, we have

1, if a=0
. 2, if a=1
d(p®) =

1, if a=2,

0, if a>=3.

However,

3. 3 . 2 .
cZ(pfp‘;’) — P1 - P1P2; Pip3 - P15 P1b3 - P1P2; —6,
pip2 - pip3; pipd -1 1-pip}

d (p%) d (pg) =0.

We will investigate the function f§(n) introduced above using a theorem proved
by Y. Katai, M. Subbarao.

Corollary 9 ([7). , Th. 5.1] Let the sequences {e(n)} and {f(n)} satisfy to
equation (3) with e(1) = f(1) = 1 and let the function E(s) given for s > 1 by the
equation

E(s) := Z 67(;1)

satisfies for two assumptions
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(i) there exist the positive constants A and B such that

(sAl)g + G(s),

where G(s) be regular in the semi-plane RNs > %;

E(s) =

(i) there exists a positive constant Ay such that

|E(1+idt)| < Agloglt], if |t| = 3.

Then for any natural number N the asymptotic formula

T(x) ==Y [(n) = exp | collog )™ § S H(h,v)(logx)~ 55
nse (hw)
1 2 .
X [1 +co(log @)™ 7T — h;ﬁyﬁ(logx)‘l} +0 ((waW) })

holds, where cg is a computable constant depended only on A and B; N is any fized
natural number; H(h,v) are the suitable constants do not depended on x and N;

the sign = for > means that summation passes over all pairs (h,v), 1 < h < N,
(h,v)
v=12,..., for whichh—i—%l/ﬂ < N—Q—Z—i—%ﬁ,

3. Function of divisors d(n). The function of divisors d(n), as we mentioned
above, is not multiplicative, dissimilar to the classical divisor function of Dirichlet.
We have for s > 1.

2

o0 7 2 o0
Ziﬂ?(Z ni) = Z$72; = (C(s) = g0(9))” =

e )
(oo} 1 2
- <<<s> > +gl<s>> :

where g; (s) is regular in the half-plane s > 1.

Theorem 1. With x — oo, the following asymptotical formula is true:
D(z) = Z d(n) = zlogz + Az + O (a:% loga:)
n<
with a computable constant A1 and an absolute constant in the symbol ”O”.

Proof. The Perron’s formula for the coefficient of Dirichlet series and the
statement (4) yields:
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where ¢ > 1, T > 1 will be chosen later.
Let’s analyze a closed contour consisting of 8 parts:

To:[c—iT, c+iT], Tyu:[%—36i, §+3i],
Ty [2 44T, c+iT], Ts:[%—36i, &-3i],

2

Ty: 3430, $+4T], Tg:|

D=

—iT, §—3i],

Ls:[§+3i, 5+3i], D7:[5—iT, c—iT].
In this case, the Cauchy’s residue theorem yields:

1 1 1 1 1
2ni) p,  2mi)p, 2mi)p, 2mi)p, 2mi) o,
1 1 1

- — - — - — + res + res
2mi ) p,  2mi) p, 2mi) p, s=1 s=1’

where integrated functions under all integrals, and also functions for which the residues
are being determined, are equal to the function
I,S
((¢3) = 26() (€29) = () + (¢(25) = 0a(s))%) =
All the integrals, except integrals on contours I's and T'g, could be estimated using

Corollary 1 as O (:132), and those integrals in its turn, following the Corollary 2, are
estimated as

‘/ + ’/ < 2% log? (6)
I's T's
ifwetakec:l+@7T:x%.
Besides that, it is easy to see that
res fres = logz + Ajz, (7
5=

s=3

where A; is a suitable constant.

From (5)-(4), the corollary’s statement follows.

4. Functions f*(n) and f;(n) of multiplicative partitions of integers.
To build an asymptotical formula for the average meaning of the function f*(n)
introduced above, determining a number of multiplicative partitions of integers on
the set of sonor numbers, we will use the Oppenheim’s method [10].

Let’s look at a modified Bessel’s function of the first kind I,,(z), z € C, z # 0,

defined by a series
)2k+n

S
In(z) = ; T(k+ 1)21“(k: Tnt+l) ®)
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where I'(u) is the Euler’s gamma function.
For a real positive z, the modified function I,,(x) has an integral representation

as
c+ico 2
" st
In(x):% / sta ()
c—100

where c is any positive number.

Besides that, for I,,(z) there is an asymptotic representation

In(z) = \/% (1 - 4”;_ L o (x_2)> . (10)

(More about the function I,(z) see in [3]).

Theorem 2. With x — oo, we have

Y f(n —wXN ”””%“+mw, (1)

n—i—l
st 1og T

where coefficients d,,, n = 0,1, ... can be expressed through coefficients of Taylor’s
series on powers (s — 1) of a function, defined below in an equality (16).

Proof. Let F(s) is the generating series for f*(n):

*

-y (n)

It is clear that for s > 1 we have

F@zﬁ@—ﬁﬁﬂ

n=2

where e(n) is a characteristic function of the set of expanded sonor numbers S.

From here,

log F(s) = Y log (1 - ) > mT+ Fu(s (12)

mesS’ mesS’

where F}(s) is regular in a half-plane Rs > 1.
From (12) we conclude that log F'(s) = ((s) + Fx(s), where Fs(s) is regular for
Rs > % Therefore,

F(s) =exp ((s) + Fa(s)) = exp (11 + F5(s ))

where Fj(s) is regular for s > £ and in particular is a circle |s — 1| < .
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Let we have in this circle a decomposition
exp (F5( Z di (s — 1

Then

T
—~
=

I

U
=

4]

w
|
—~

1+bl(sfl)+b2(s—1)2+--~),

For deriving an asymptotic formula for summation function . f*(n), we will
n<x
utilize Landau’s method, building first an asymptotic representation of a sum

FRIEE
nx

and then based on asymptotic differentiation will find the necessary formula for the
sum Zn<<$ f*(n).

We have
1 ct+ioo F
Z ffn)(x—n) = — / ixsﬂds, (e>1).
= = 2omi [ s(s+1)

Because F(s) doesn’t have singularities in the half-plane $s > 1 expect the point
s = 1, we shall replace the integration contour (¢ — ico, ¢+ i00) by a composition of
three contours,

I’y : line segment (1 —ico, 1 —ial,
5 : semicircle of radius a 1 + ae®?, — < g,
I's : line segment [1 +ia, 14 ioc0).
From the estimation of {(s) on the unit line (see Corollary 1), we obtain that the
integrals on I'; and I'3 are evaluated as O (xQ) On the semicircle I'y we will make a

change of variable s = 1 + %, so that z = a~ e’ and # changes from —5 to 5. We
will contract the semicircle I's to a point. Then we get that for any b > 0

1 s+1 1 s—1+42
7/ F(s) T s = 7/ F(s)L ds =
2mi ) T, s(s+1) 2mi ) T, s(s+1)

b+ioco 1
1 xr=ze” 1
— 2, _— e FZ(H‘;)d O (£2) =
AT o / CEDCEEE 2+ 0 ()
b—ioco
b+i00

1 et g b b

2 2 2

= — — (1 + =+ =+ )dz+O :
AT omi / (z+1)(224+1) ( z 22 > : (w )

b—ioo
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Now, by virtue of a definition of the modified Bessel’s function I,,(z), we imme-
diately get

2 1 btioo PRRC:2 / /
1T (& 1 2 2
== %/ — <1+Z+2+ >dz—|—0(x)=
b—ico
Cc $2 > e log 1
= [ et o) -
n=0 b—i
—i00
Cl$2

o0
== Z bplni1(2 log;:v)(logx)fnT+l +0 (2?).
n=0
Now, using asymptotic differentiation, we come to the statement of the theorem.
Note. The relation (10) shows that the asymptotic formula, obtained in the
Theorem 2, is nontrivial.
Now we are going over to an investigation of the sum:

Do(x) == f5(n).
n<e
From (3) it follows that for Rs > 1
B =3 _ 5 L) 4 Ry,
n=1

n m
mesS’

where Fy(s) is regular in a half-plane Rs > 3.
Therefore, all conditions of the Katai-Subbarao theorem are satisfied with a pa-
rameter S = 1. Hence the following assertion is true.

Theorem 3. Let fi(n) be a number of representation of n as a product of sonor
numbers. Then,

Do(a) = eov®e {570 ) H(hv)(logz)~ 5 (1+ collogw) ™+ — 252 (log )~ ) +

+0 ((log x)_wfs ) } ,

where sign * at the sum Y. means that the summation is performed for all pairs
(h,v)

(h,v), l<h< N,v=1,2.., forwhz'chh—l—%vgN—i—%.

CONCLUSION. The proved theorems show that the problems of a multiplicative
partition of integer numbers on the set of sonor numbers can be researched by methods
of investigation of similar problems for multiplicative partitions on the set of IN, and

it is possible to assume the correctness of an analogy regarding the maximum order
of the functions f*(n) and f3(n).
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A. Kopuescokuti, 5. Bopobiios
ITPO MYJIBTUIIIIKATUBHY ®YHKI[IIO PO3BUTTS

Pesrome

Mu BUBYaEMO KiNbKIiCTb 300paKe€Hb N = S1 - Sm, A€ S — COHOPHI 4uciIa, TOOTO I KO-
JKHOTO §; He iCHye HATYPAIbHHX dmcesT 1 i k, Takux mo s; = n*, k > 2. Bunryioda byHKia
f(n) Takux 306pakeHb € MyJIbTHILIKATHBHUM aHAJONOM aIUTHBHOI (yHKUIl PO3GUTTIB n.
Mu 6ynyemo acumnroTudaHy HOpMyITy ajsi cymaropHol dbyHKMI qys f(n) 1 mocmimKyemo
POBIIO/IIEHHS 3HAYEHD y3arajabHenol dyukil Aibaukis L(n) (KiabKicTs 306pakeHsb n 'y Bu-
sl 106y TKY JBOX COHODHUIX HHCEI).

Kna10106i cr06a: MYyAbMuniikamueHa Gyrkyis pod3bummis, COROPHT YUCAL, ACUMNMOMULHA

dpopmyaa, padu ipizae .
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A. Kopuescruti, 5. Bopobvés
O MYJIbTUIIJIMKATUBHON ®YHKIIMU PA3BBUEHUSA

Pesrome

Mp! n3y4daeM KOJMIECTBO IIPEJCTABIEHUN N = S1 - - * Sy, TJ€ Sj — COHOPHBIE YHCJIA, T. €. JJIsS
KayKJI0I0 §; He CYNIECTBYIOT HATYpaJIbHblE YHCIa N U k, TAaKHe 49TO S; = n* k> 2. Cun-
ThiBafomast GbyHKuus f(n) TAKUX IpeJCTaBIeHnIl SBIISETCS MyJIbTUILINKATABHBIM aHAJIOIOM
AU TUBHON pyHKIMYU pa3dumeHus n. Mbl CTPOUM aCHMITOTHYIECKYIO (DOPMYILY JJIS CyMMa-
Topuoil bynknuu qus f(n) u ucenaemyem pacupejiesieHne 3HaYeHuNH 0606mennoil byHkmn
nenuresneit L(n) (KOJMUeCTBO NpeACTABIEHU N B BUJE IPOU3BEJICHUS JBYX COHOPHBIX UH-
ceur).

Karouesvie cao6a: MYALTMUNAUKAMUESHAA GYHKUUA Pa3OUEHUT, COHOPHBIE YUCAA, AGCUMNIMO-
muueckas popmyaa, pade. Jupuxse .



